--- tags: - generated_from_trainer datasets: - invoice metrics: - precision - recall - f1 - accuracy base_model: microsoft/layoutlmv3-base model-index: - name: layoutlmv3-finetuned-invoice results: - task: type: token-classification name: Token Classification dataset: name: Invoice type: invoice args: invoice metrics: - type: precision value: 1.0 name: Precision - type: recall value: 1.0 name: Recall - type: f1 value: 1.0 name: F1 - type: accuracy value: 1.0 name: Accuracy --- # LayoutLM-v3 model fine-tuned on invoice dataset This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. We use Microsoft’s LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds. It achieves the following results on the evaluation set: - Loss: 0.0012 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data All the training codes are available from the below GitHub link. https://github.com/Theivaprakasham/layoutlmv3 The model can be evaluated at the HuggingFace Spaces link: https://huggingface.co/spaces/Theivaprakasham/layoutlmv3_invoice ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 100 | 0.0878 | 0.968 | 0.9817 | 0.9748 | 0.9966 | | No log | 4.0 | 200 | 0.0241 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 6.0 | 300 | 0.0186 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 8.0 | 400 | 0.0184 | 0.9854 | 0.9574 | 0.9712 | 0.9956 | | 0.1308 | 10.0 | 500 | 0.0121 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | 0.1308 | 12.0 | 600 | 0.0076 | 0.9939 | 0.9878 | 0.9908 | 0.9987 | | 0.1308 | 14.0 | 700 | 0.0047 | 1.0 | 0.9959 | 0.9980 | 0.9996 | | 0.1308 | 16.0 | 800 | 0.0036 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.1308 | 18.0 | 900 | 0.0045 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0069 | 20.0 | 1000 | 0.0043 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0069 | 22.0 | 1100 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0069 | 24.0 | 1200 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0069 | 26.0 | 1300 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0069 | 28.0 | 1400 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0026 | 30.0 | 1500 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0026 | 32.0 | 1600 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0026 | 34.0 | 1700 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0026 | 36.0 | 1800 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0026 | 38.0 | 1900 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.002 | 40.0 | 2000 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1