File size: 7,841 Bytes
95f9e03 0093fc4 95f9e03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-0.5B
tags:
- chat
---
<hr>
# Llama.cpp imatrix quantizations of Qwen/Qwen2.5-0.5B-Instruct
<img src="https://cdn-uploads.huggingface.co/production/uploads/646410e04bf9122922289dc7/gDUbZOu1ND0j-th4Q6tep.jpeg" alt="llama" width="60%"/>
Using llama.cpp commit [eca0fab](https://github.com/ggerganov/llama.cpp/commit/eca0fab) for quantization.
Original model: [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/meta-llama/Qwen/Qwen2.5-0.5B-Instruct)
All quants were made using the imatrix option and Bartowski's [calibration file](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8).
<hr>
# Perplexity table (the lower the better)
| Quant | Size (MB) | PPL | Size (%) | Accuracy (%) | PPL error rate |
| ------- | --------- | ------- | -------- | ------------ | -------------- |
| IQ1_S | 302 | 30.0453 | 31.82 | 50.53 | 0.23714 |
| IQ1_M | 304 | 24.9151 | 32.03 | 60.93 | 0.19238 |
| IQ2_XXS | 307 | 21.4864 | 32.35 | 70.66 | 0.16704 |
| IQ2_XS | 310 | 19.7829 | 32.67 | 76.74 | 0.15355 |
| IQ2_S | 311 | 19.2041 | 32.77 | 79.06 | 0.14841 |
| IQ2_M | 314 | 18.325 | 33.09 | 82.85 | 0.14001 |
| Q2_K_S | 316 | 18.3462 | 33.3 | 82.75 | 0.14091 |
| IQ3_XXS | 319 | 16.9784 | 33.61 | 89.42 | 0.12828 |
| Q3_K_S | 323 | 17.7765 | 34.04 | 85.4 | 0.13668 |
| IQ3_S | 323 | 16.3794 | 34.04 | 92.69 | 0.12173 |
| IQ3_XS | 323 | 16.3794 | 34.04 | 92.69 | 0.12173 |
| Q2_K | 323 | 17.6841 | 34.04 | 85.85 | 0.13561 |
| IQ3_M | 327 | 16.3667 | 34.46 | 92.76 | 0.12182 |
| IQ4_XS | 334 | 15.8792 | 35.19 | 95.61 | 0.11933 |
| IQ4_NL | 337 | 15.8468 | 35.51 | 95.8 | 0.11921 |
| Q4_0 | 337 | 17.1007 | 35.51 | 88.78 | 0.13053 |
| Q3_K_M | 339 | 15.8499 | 35.72 | 95.79 | 0.11934 |
| Q3_K_L | 353 | 15.7298 | 37.2 | 96.52 | 0.1182 |
| Q4_1 | 358 | 16.1819 | 37.72 | 93.82 | 0.12328 |
| Q4_K_S | 368 | 15.5497 | 38.78 | 97.63 | 0.11716 |
| Q5_0 | 380 | 15.5038 | 40.04 | 97.92 | 0.11702 |
| Q4_K_M | 380 | 15.4428 | 40.04 | 98.31 | 0.11637 |
| Q5_K_S | 394 | 15.5266 | 41.52 | 97.78 | 0.11682 |
| Q5_1 | 400 | 15.4875 | 42.15 | 98.03 | 0.11641 |
| Q5_K_M | 401 | 15.4788 | 42.26 | 98.08 | 0.11631 |
| Q6_K | 483 | 15.2145 | 50.9 | 99.79 | 0.11422 |
| Q8_0 | 507 | 15.239 | 53.42 | 99.63 | 0.11452 |
| F16 | 949 | 15.1819 | 100 | 100 | 0.114 |
<hr>
# Qwen2.5-0.5B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 0.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 0.49B
- Number of Paramaters (Non-Embedding): 0.36B
- Number of Layers: 24
- Number of Attention Heads (GQA): 14 for Q and 2 for KV
- Context Length: Full 32,768 tokens and generation 8192 tokens
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |