File size: 1,965 Bytes
d03cfb7 2be3ae4 d03cfb7 2be3ae4 d03cfb7 95a0a34 d03cfb7 b643d51 d03cfb7 2be3ae4 d03cfb7 a54a46f d03cfb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language: en
tags:
- qa
- question
- generation
- SQuAD
- data2text
- metric
- nlg
- t5-small
license: mit
datasets:
- squad_v2
model-index:
- name: t5-qg_webnlg_synth-en
results:
- task:
name: Data Question Generation
type: Text To Text Generation
widget:
- text: "The Eagle </s> name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"
---
# t5-qg_webnlg_synth-en
## Model description
This model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer.
It is actually a component of [QuestEval](https://github.com/recitalAI/QuestEval) metric but can be used independently as it is, for QG only.
## How to use
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qg_webnlg_synth-en")
model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qg_webnlg_synth-en")
```
You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):
`text_input = "{ANSWER} </s> {CONTEXT}"`
where `CONTEXT is a structured table that is linearised this way:
`CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"`
## Training data
The model was trained on synthetic data as described in [Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation](https://arxiv.org/abs/2104.07555).
### Citation info
```bibtex
@article{rebuffel2021data,
title={Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation},
author={Rebuffel, Cl{\'e}ment and Scialom, Thomas and Soulier, Laure and Piwowarski, Benjamin and Lamprier, Sylvain and Staiano, Jacopo and Scoutheeten, Geoffrey and Gallinari, Patrick},
journal={arXiv preprint arXiv:2104.07555},
year={2021}
}
``` |