File size: 1,969 Bytes
d03cfb7
 
 
 
2be3ae4
d03cfb7
 
 
 
 
 
 
 
 
 
 
 
2be3ae4
d03cfb7
 
 
95a0a34
d03cfb7
 
 
 
b643d51
10d5367
d03cfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2be3ae4
d03cfb7
 
 
 
 
 
 
 
 
 
 
 
a54a46f
d03cfb7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
language: en
tags:
- qa
- question
- generation
- SQuAD
- data2text
- metric
- nlg
- t5-small
license: mit
datasets:
- squad_v2
model-index:
- name: t5-qg_webnlg_synth-en
  results:
  - task:
      name: Data Question Generation
      type: Text To Text Generation
widget:
   - text: "The Eagle </s> name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"
---
# t5-qg_webnlg_synth-en

## Model description
This model is a *Data Question Generation* model based on T5-small, that generates questions, given a structured table as input and the conditioned answer. 
It is actually a component of [QuestEval](https://github.com/ThomasScialom/QuestEval) metric but can be used independently as it is, for QG only.


## How to use
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-qg_webnlg_synth-en")

model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-qg_webnlg_synth-en")
```

You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):

`text_input = "{ANSWER} </s> {CONTEXT}"`

where `CONTEXT is a structured table that is linearised this way:

`CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"`


## Training data
The model was trained on synthetic data as described in [Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation](https://arxiv.org/abs/2104.07555).

### Citation info

```bibtex
@article{rebuffel2021data,
  title={Data-QuestEval: A Referenceless Metric for Data to Text Semantic Evaluation},
  author={Rebuffel, Cl{\'e}ment and Scialom, Thomas and Soulier, Laure and Piwowarski, Benjamin and Lamprier, Sylvain and Staiano, Jacopo and Scoutheeten, Geoffrey and Gallinari, Patrick},
  journal={arXiv preprint arXiv:2104.07555},
  year={2021}
}
```