Upload moondream.py
Browse files- moondream.py +193 -0
moondream.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import torch
|
2 |
from .vision_encoder import VisionEncoder
|
3 |
from .configuration_moondream import MoondreamConfig
|
@@ -113,6 +114,198 @@ class Moondream(PreTrainedModel):
|
|
113 |
else:
|
114 |
return cleaned_answer
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
def batch_answer(
|
117 |
self,
|
118 |
images,
|
|
|
1 |
+
"""
|
2 |
import torch
|
3 |
from .vision_encoder import VisionEncoder
|
4 |
from .configuration_moondream import MoondreamConfig
|
|
|
114 |
else:
|
115 |
return cleaned_answer
|
116 |
|
117 |
+
def batch_answer(
|
118 |
+
self,
|
119 |
+
images,
|
120 |
+
prompts,
|
121 |
+
tokenizer,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
image_embeds = self.encode_image(images)
|
125 |
+
|
126 |
+
templated_prompts = [
|
127 |
+
f"<image>\n\nQuestion: {prompt}\n\nAnswer:" for prompt in prompts
|
128 |
+
]
|
129 |
+
prompt_embs = [
|
130 |
+
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
|
131 |
+
for prompt, image_embed in zip(templated_prompts, image_embeds)
|
132 |
+
]
|
133 |
+
|
134 |
+
bos_emb = prompt_embs[0][0]
|
135 |
+
max_len = max([p.shape[0] for p in prompt_embs])
|
136 |
+
|
137 |
+
inputs_embeds = torch.cat(
|
138 |
+
[
|
139 |
+
torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
|
140 |
+
for p in prompt_embs
|
141 |
+
],
|
142 |
+
dim=0,
|
143 |
+
)
|
144 |
+
attention_mask = torch.cat(
|
145 |
+
[
|
146 |
+
torch.cat(
|
147 |
+
[
|
148 |
+
torch.zeros(
|
149 |
+
1,
|
150 |
+
max_len - p.shape[0],
|
151 |
+
device=self.device,
|
152 |
+
dtype=torch.long,
|
153 |
+
),
|
154 |
+
torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
|
155 |
+
],
|
156 |
+
dim=1,
|
157 |
+
)
|
158 |
+
for p in prompt_embs
|
159 |
+
],
|
160 |
+
dim=0,
|
161 |
+
)
|
162 |
+
|
163 |
+
generate_config = {
|
164 |
+
"eos_token_id": tokenizer.eos_token_id,
|
165 |
+
"bos_token_id": tokenizer.bos_token_id,
|
166 |
+
"pad_token_id": tokenizer.bos_token_id,
|
167 |
+
"max_new_tokens": 512,
|
168 |
+
**kwargs,
|
169 |
+
}
|
170 |
+
|
171 |
+
with torch.no_grad():
|
172 |
+
output_ids = self.text_model.generate(
|
173 |
+
inputs_embeds=inputs_embeds,
|
174 |
+
attention_mask=attention_mask,
|
175 |
+
**generate_config,
|
176 |
+
)
|
177 |
+
|
178 |
+
return [
|
179 |
+
x.strip()
|
180 |
+
for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
181 |
+
]
|
182 |
+
"""
|
183 |
+
import torch
|
184 |
+
from .vision_encoder import VisionEncoder
|
185 |
+
from .configuration_moondream import MoondreamConfig
|
186 |
+
from transformers import PreTrainedModel, TextIteratorStreamer
|
187 |
+
|
188 |
+
from .modeling_phi import PhiForCausalLM
|
189 |
+
from .configuration_moondream import PhiConfig
|
190 |
+
|
191 |
+
class Moondream(PreTrainedModel):
|
192 |
+
config_class = MoondreamConfig
|
193 |
+
_supports_flash_attn_2 = True
|
194 |
+
|
195 |
+
def __init__(self, config):
|
196 |
+
super().__init__(config)
|
197 |
+
self.vision_encoder = VisionEncoder(
|
198 |
+
use_flash_attn=config._attn_implementation == "flash_attention_2"
|
199 |
+
)
|
200 |
+
|
201 |
+
if type(config.text_config) == dict:
|
202 |
+
phi_config = PhiConfig(
|
203 |
+
**config.text_config, attn_implementation=config._attn_implementation
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
phi_config = config.text_config
|
207 |
+
self.text_model = PhiForCausalLM(phi_config)
|
208 |
+
|
209 |
+
@property
|
210 |
+
def device(self):
|
211 |
+
return self.text_model.device
|
212 |
+
|
213 |
+
def encode_image(self, image):
|
214 |
+
with torch.no_grad():
|
215 |
+
return self.vision_encoder(image)
|
216 |
+
|
217 |
+
def input_embeds(self, prompt, image_embeds, tokenizer):
|
218 |
+
def _tokenize(txt):
|
219 |
+
return tokenizer(
|
220 |
+
txt, return_tensors="pt", add_special_tokens=False
|
221 |
+
).input_ids.to(self.device)
|
222 |
+
|
223 |
+
text_emb = self.text_model.get_input_embeddings()
|
224 |
+
|
225 |
+
# Add BOS token
|
226 |
+
embeds = []
|
227 |
+
embeds.append(
|
228 |
+
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
|
229 |
+
)
|
230 |
+
|
231 |
+
if "<image>" not in prompt:
|
232 |
+
embeds.append(text_emb(_tokenize(prompt)))
|
233 |
+
else:
|
234 |
+
assert prompt.count("<image>") == 1
|
235 |
+
before, after = prompt.split("<image>")
|
236 |
+
if len(before) > 0:
|
237 |
+
embeds.append(text_emb(_tokenize(before)))
|
238 |
+
embeds.append(image_embeds.to(self.device))
|
239 |
+
if len(after) > 0:
|
240 |
+
embeds.append(text_emb(_tokenize(after)))
|
241 |
+
|
242 |
+
return torch.cat(embeds, dim=1)
|
243 |
+
|
244 |
+
def get_input_embeddings(self):
|
245 |
+
return self.text_model.get_input_embeddings()
|
246 |
+
|
247 |
+
async def generate(
|
248 |
+
self,
|
249 |
+
image_embeds,
|
250 |
+
prompt,
|
251 |
+
tokenizer,
|
252 |
+
max_new_tokens=128,
|
253 |
+
**kwargs,
|
254 |
+
):
|
255 |
+
generate_config = {
|
256 |
+
"eos_token_id": tokenizer.eos_token_id,
|
257 |
+
"bos_token_id": tokenizer.bos_token_id,
|
258 |
+
"pad_token_id": tokenizer.bos_token_id,
|
259 |
+
"max_new_tokens": max_new_tokens,
|
260 |
+
**kwargs,
|
261 |
+
}
|
262 |
+
|
263 |
+
with torch.no_grad():
|
264 |
+
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
265 |
+
streamer = TextIteratorStreamer(tokenizer)
|
266 |
+
|
267 |
+
# Start generation in a separate thread
|
268 |
+
thread = Thread(target=self.text_model.generate, kwargs={
|
269 |
+
"inputs_embeds": inputs_embeds,
|
270 |
+
"streamer": streamer,
|
271 |
+
**generate_config
|
272 |
+
})
|
273 |
+
thread.start()
|
274 |
+
|
275 |
+
# Yield generated text as it becomes available
|
276 |
+
for new_text in streamer:
|
277 |
+
yield new_text
|
278 |
+
|
279 |
+
thread.join()
|
280 |
+
print("FINISHED")
|
281 |
+
|
282 |
+
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
283 |
+
|
284 |
+
def answer_question(
|
285 |
+
self,
|
286 |
+
image_embeds,
|
287 |
+
question,
|
288 |
+
tokenizer,
|
289 |
+
chat_history="",
|
290 |
+
result_queue=None,
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer:"
|
294 |
+
answer = self.generate(
|
295 |
+
image_embeds,
|
296 |
+
prompt,
|
297 |
+
tokenizer=tokenizer,
|
298 |
+
max_new_tokens=512,
|
299 |
+
**kwargs,
|
300 |
+
)[0]
|
301 |
+
cleaned_answer = answer.strip()
|
302 |
+
|
303 |
+
# Use the result_queue to pass the result if it is provided
|
304 |
+
if result_queue:
|
305 |
+
result_queue.put(cleaned_answer)
|
306 |
+
else:
|
307 |
+
return cleaned_answer
|
308 |
+
|
309 |
def batch_answer(
|
310 |
self,
|
311 |
images,
|