File size: 12,961 Bytes
da8e9a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d9c5e680>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d9c5e710>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d9c5e7a0>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d9c5e830>",
        "_build": "<function ActorCriticPolicy._build at 0x7f61d9c5e8c0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f61d9c5e950>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f61d9c5e9e0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d9c5ea70>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f61d9c5eb00>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d9c5eb90>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d9c5ec20>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d9c5ecb0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7f61e28b3140>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "num_timesteps": 6144,
    "_total_timesteps": 5000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1683122612422850293,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAADR7j70Ai1++quC3PeXblD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.2287999999999999,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDoAAAAAAACMAWyUSxqMAXSUR0AbCIacZtN0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0AbOoegctGvdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0AbUxL0z0pWdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ab5DWsijcmdX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AcchnrY5DJdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0Acsh5gPVd5dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AdFDlYEGJOdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0AdcFRpDeCTdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AdkPjGT9sKdX2UKGgGR0BJAAAAAAAAaAdLMmgIR0AeAcebNKRMdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AePU4JeE7GdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AeXzCk43m3dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0AedR64UeuFdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AenH/95yEMdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AesO4G2TgVdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AfJPFefI0ZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AfM9KVY6n0dX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AfhPM0P6KtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Afk9+w1R+CdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AfxPEbYK6XdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0AgNObAk9lmdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AgVOSGJvYOdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AgdPiT+vQodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgjnFHavicdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Agl2/SH/LldX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AgqKa5PM0QdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0AgruKGcnVodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgvK0UoKD1dX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ag2brkbPyDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Ag5N21UlzEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0Ag6oLG7z06dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AhE2JBPbfxdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AhI6e5Fw1jdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0AhMaqjrRjSdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AhPKSxJNCadX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AhQ8+zMRpUdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0AhU0pEx7AtdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AhXt0FKTStdX2UKGgGR0BEgAAAAAAAaAdLKWgIR0AhbutwJgLJdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0Ahe51/2Cd0dX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhiK8cuJ1rdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Ahlv6TGHYZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0Ahnw9aEBbOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AhpdJrcj7idX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AhuBYmsvIwdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhxLbpNbkfdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0Ah2SL61stTdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah3zJZGKAKdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0Ah6189fTkRdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah8euFHrhSdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Ah+xSpBHCodX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AiAYYR/ViGdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0AiHtsvZh8ZdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AiKoLofSx8dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AiMfLcKw6idX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AiN0PH1e0HdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AiR++/QBxQdX2UKGgGR0BHgAAAAAAAaAdLL2gIR0AlirT6SDAadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AllLg4wRGudX2UKGgGR0A1AAAAAAAAaAdLFWgIR0Aln88cMmWudX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AlqFotcv/SdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AltdM0xdpqdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Alw/lhgE2YdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Al0VTrE9+xdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Al33TNMXabdX2UKGgGR0BQQAAAAAAAaAdLQWgIR0AmBkuHvc8DdX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AmJeruIAOsdX2UKGgGR0BhAAAAAAAAaAdLiGgIR0AmbTjvNNahdX2UKGgGR0BbgAAAAAAAaAdLbmgIR0AmrDCxeLNwdX2UKGgGR0BJgAAAAAAAaAdLM2gIR0Amyac7QswtdX2UKGgGR0BRAAAAAAAAaAdLRGgIR0Am7WIXTEzgdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AnEKGcnVoYdX2UKGgGR0BSwAAAAAAAaAdLS2gIR0AnNqRlpXZHdX2UKGgGR0BVAAAAAAAAaAdLVGgIR0AnYC9RJmNBdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Anc7tAs053dX2UKGgGR0BRQAAAAAAAaAdLRWgIR0AnmNjslb/wdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0AnuPFvQ4S6dX2UKGgGR0BHgAAAAAAAaAdLL2gIR0An1HNorWiDdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0An/w/gR9PUdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AoCVqN6w+udX2UKGgGR0BaAAAAAAAAaAdLaGgIR0AoP1qWTot+dX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AoWis4ku6FdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0Aoas5n13+udX2UKGgGR0BBAAAAAAAAaAdLImgIR0AogPU8V58jdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0AouMlTm4iHdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ao2ShakhzOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0Ao4rR0EHMVdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ao8UzKs+3ZdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Ao+G21D0DmdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0ApAoDPnjhldX2UKGgGR0AqAAAAAAAAaAdLDWgIR0ApCgVXV9WqdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0ApIgdwNsnBdX2UKGgGR0BYwAAAAAAAaAdLY2gIR0ApT1/Ue+23dX2UKGgGR0A6AAAAAAAAaAdLGmgIR0ApWWepXIU8dX2UKGgGR0BSAAAAAAAAaAdLSGgIR0ApdXBguyu7dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0ApgRcNYr8SdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0ApjTMJQcghdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Apk67ulXRxdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0ApnW1+iJwbdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0AprAWSEDhcdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 30,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True]",
        "bounded_above": "[ True  True  True  True]",
        "_shape": [
            4
        ],
        "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
        "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
        "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
        "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
        ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
        "n": "2",
        "start": "0",
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 1,
    "n_steps": 2048,
    "gamma": 0.99,
    "gae_lambda": 0.95,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 10,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}