Commit
·
b16fdd3
1
Parent(s):
6238925
Test commit
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- tqc-PandaReachDense-v2.zip +3 -0
- tqc-PandaReachDense-v2/_stable_baselines3_version +1 -0
- tqc-PandaReachDense-v2/actor.optimizer.pth +3 -0
- tqc-PandaReachDense-v2/critic.optimizer.pth +3 -0
- tqc-PandaReachDense-v2/data +116 -0
- tqc-PandaReachDense-v2/ent_coef_optimizer.pth +3 -0
- tqc-PandaReachDense-v2/policy.pth +3 -0
- tqc-PandaReachDense-v2/pytorch_variables.pth +3 -0
- tqc-PandaReachDense-v2/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -11.89 +/- 3.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **TQC** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "sb3_contrib.tqc.policies", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f4e2f18faf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f1912a0>"}, "verbose": 1, "policy_kwargs": {"n_critics": 2, "n_quantiles": 25, "use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADv7owQJkAqD93g4QCgyrfoUWEQuRD/0G/X6eh50ibiC8jblPZ5HPhjV5kBFzGxv9lje7qvWxpME5DbmEiA+1+LOWy0iabk7KPZIHUPrgLUnVtQTLUXrXbRy+RCSq1IxhywTl6ptDwYUsf9IZQ+h7n9dUVT2RiqVZrZMEG3cqlU01Qzk/a+M47GG/WWCVwYf8yyDqx/bbdrEXcLOkH0fnZzGgUWLx828EYmVKXCMlQPsneYjxhMvffA0QNa1AK6nctEsWeoeJ/F78QCZgVkKeNc2p5RBZt20nwBLtH1UiNesTmG7cydgrXw5Kz53o0IHe1ZWAZZKsIt70MsGmq7/h9x4IHsZ2gdK5WlNuErBzvOXvgTC/HBExv3c9o4tuEnu9ArB2Tm2ObFMGASSlL582kHB/B/pQAu/PpL/FdMlFeABKJaL8mNR4ay3jjSLnFGl9jste5saDcBD0e6QYljQByGSsGhjR1vKHSGMHXZhEFQoxD0LWKtYWXjqrk+WFXFLRXEZA1QQkBAT6YLVJrtzytQfbeZSW8AzSgvj17y09OViZN9so2IrA1keJ3Dupc6T9BQzucuCyTUWZDbnYKKhvixKKlZmwqPsZf1UB9YAZdY7txWKswATip7IqjiDICQCWSYYUiBLysCQfC4pgS4VuzHWkGPBejAfq/PCk49vB+o4oL109/QWthHyLRfXchfIBmAPH5bejla/4JcWDC57/jULwR2XgAvBMowBipTLZaFiaCtW4Nde3cqL3LNxdQi0AedjvjkP7JkB6CQyeyUcx5uaIEyjXV4/TaLx9UHzr7jGJCkIGoIqGYydlJ8HFbwJFtXD8bvaURoCpx0ssMhI5aokPNHLPIbqEvtqExFL5sYlnpU7Frh8yHK/Qf01XKXJHvrpzEWzjbT0G+/hXIJBllxA3R2OJjSSf01Rt9k0cGNbXmp8tGso9Sw5yYuoh+PUA8zbh4ZSBGe9l6ncg6KxJmcLY8QGV7DJIFKy23m6pjUErwnLW8jpjBmOtFrOk17hIDsDnOi5HAu/cYGCeAFMTfKcgdgCDSIl0l640rdyUH62rJxMvC3Sa/s/VveS6CybN8lL/jfk3zcXF46Gw7Ja5AO/2CN1oMF5Y38yzpTLvyG+0dhvpRb7LFyvAHY6SmToFKj1Pk16OssK62iXcTyetQihLTAPKFlXbIRzH2ZcrmXIt8MAY4rkh5atk/p1+KmTqMsWrH5He5JJxUBxGgfl9s6BcDxXHR4vWJSFR4+N7sOQHuzsQP5cJ5FeoQc5SmCblW2i9GLVN4MTIurhmSZ7F07Gbqv12Vx7Cqpgc9AGImY+1QNov1ZjQBOMzgk6GwEI6mKXM+/DF/hPtzrQLPUA481zno5afyQdsB2d4Z5kUDD0/Tt4gleNeEGYc1DSUVz4GEsdC0fACWK3oOb4V5e0uMRoZ7yQRJ7KWbHz1ZO3D0UGjlsB6WFvoSV8OywQ+nJq3k6aCtb175MtFcaaORek8gIjQ8AUURUWJ9/9roVCChC7SK1MPgGRRjWTZUTqg6IN5Ta90+IMjZqhq89TtlaPtg8AK/ZfDQbKWsd8egho/Ny98arbHvytv5XbfLUmuu4W1bt1PW5rNOUWcSDp3NqAesVUyp7ebDRSW9IMZpySAiRQeN8TYzytxvfNJ66VbJyz3eKjL1c8hinaiHhPkhMKBM2PHvtlycB4ryVa31vQajRoNaa8XHZbbRSosz941YaIfYO+z7p0NRTUqSWnBY/Fu++Af7xwbFCMFtP6NZX2fjApxTSZyW+32YS4nMc+IVAPMrNuKIwELtMuLP2D75QPv54eA1sXnt32Ild6LcjW0MG0r63P6ykn/SEB3DGxWHq07t3xqdV+6YTrCNv60c7uiK7XPfcP25hmLL6/UW6fjuPbq1y/ZXh4Umvnseuu4uqRCUUuLCrRUNOjZuR2pLd9cD+LMz+JtM+uTCWnTWMxZubDF5RvzTlbQL88mivuzNm4cJ4/Ou53gfhT2iDoKShEGcC5ZVJ0BSv7SftU2tVa3MlXnl5mI1osrkkWPnHOmRvVS07vjETyGVnXz3r8//HfGo81uoS5OexXCQZuXL+1pkuXw2qcIz2jlcS6RxIM2W43zQ0TnR0oS0GMYSYV7GG309Sy3PotM/rrNo03XORBz8YA7QayWWrZD/ljbO2wRLfetWREg+qDEt88YciaNOhzqzS/kmGstkC5ILjr31N25WW2YFcp7hY+CDidTE4Mf8tam63GqQY9j76JoAhF28IvihMfGeRfWpGtyUXDOWD1+wFqAwnAbajEOQm5c2i/BdorHp9hHL4cASkr7yCWeI+enFhrBsQiyCRUfHtfPOONM47XHjULTNhn7hEvuf7EtJ9J8WwXQu3o82saIkNrv0w7LEawKUhcq0fiNvc6fXqwp+zPHI0kFyMXMUQqsh19xjQ2en+WX2WOl6Z3NmYKIselaHzIcmndNxtBbW/E0ZY8ss6DlW/MU8i8+WZiou8iAIgbFoAljColHGSHTY2jAFmPtFyeEL0kGXygIJEnVfScBQBQrtD/OK/lUuWpClIHI6u/jWJfaj5wqedU3q2kokNxiOhrqbfodp8IozzHXQdDULTamD9LEhiSuu7IeL8IkdzJ4+ZkZkp98GMAHVmJmPE/IUh2TbpOf+znx9sVJfKxi02S2ah/3PUvURVtR9skgIwRivhURBDOTYnQysmoQZk57yjbXh8jIOBih7cVNyr3NOyDEHJkIAJBfdsYCQ7BkGsJItV/LLZgP9Rkto1IVYGuK+9qaXGRFsxuwkzVXf+J8Sg8UyecjFrWugZ+APT2js2vf+LPUjc2g5cBDgbdJcJEc6LFjNy097epNQTRhNKtC9zdDN1y2jG+0Pld2tx2nNA5gGlgabQI6TLgcVd2kapJWRRRNrWLgWRTkqyXIqlt4LR0ZzTY4j29NzmDkUIlM7bg3NRui82cLWcM8MdUii/4gAMJrxpAZa+gl0hBCOyhOcM2q04oc1DoHwN7g1YsmnSx2d3oBjLL7DYVytIu5OuMnI62V5jotEn5f95UlScRFydvFdHpPXnjGpjcGk0ry1J5jfkGRu8R8s/TKXa/S2HJs0+rXuQDv8YzATusNRKrBYQX7kMpOwhRJmfxwEip/g62EvEnBDasOTZbMuEygTguHGc1L63/W/PsxNEeHm1o+jUXjrMZbIBRh6y9Bdd5ImC1+WyAi5JrAG49hzocMkU4fztJ8HhFNGQU1aKz5UzLpxpHElymQ2iIyAZUgdZhedHZ/9/pTuXZbqj4Sg+oSO3SQm0Gi2dKL8+8Cyk5LlsBK9mig33AbF8OxourYTdxpyJOuWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 3502, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672434095313378320, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA854IPRMXpDtJxHI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADzngg9ExekO0nEcj561d69XPX6vp/y+j6UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.03335471 0.00500763 0.2370769 ]]", "desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]", "observation": "[[ 0.03335471 0.00500763 0.2370769 -0.10880561 -0.4901532 0.4901323 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAw0Q/PQeIiDxphFo+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADDRD89B4iIPGmEWj5rvIY+eFCaPpNtJz+UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.04669644 0.01666643 0.21339573]]", "desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]", "observation": "[[0.04669644 0.01666643 0.21339573 0.26315627 0.30139518 0.6540157 ]]"}, "_episode_num": 70, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6497999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbQsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV7JjIxAfGMCUhpRSlIwBbJRLMowBdJRHP9UZwXIlt0p1fZQoaAZoCWgPQwiCqtGrAfokwJSGlFKUaBVLMmgWRz/dvBacI7eVdX2UKGgGaAloD0MIguZz7nZNM8CUhpRSlGgVSzJoFkdACCRW912aD3V9lChoBmgJaA9DCKcHBaVoBSHAlIaUUpRoFUsyaBZHQBb+kgwGnoB1fZQoaAZoCWgPQwjyfXGpSvskwJSGlFKUaBVLMmgWR0Ag0kYXO4XodX2UKGgGaAloD0MIkq6ZfLMFL8CUhpRSlGgVSzJoFkdAJkQyIpH7QHV9lChoBmgJaA9DCP3AVZ5ASCzAlIaUUpRoFUsyaBZHQCuhjYqXnhd1fZQoaAZoCWgPQwhtVRLZB7kdwJSGlFKUaBVLMmgWR0Aw2yuZCv5hdX2UKGgGaAloD0MI+kLIef//IsCUhpRSlGgVSzJoFkdANHOpfhMrVnV9lChoBmgJaA9DCH6s4Lch5iXAlIaUUpRoFUsyaBZHQDcDk/8l5W11fZQoaAZoCWgPQwhycOmY8/gxwJSGlFKUaBVLMmgWR0A5r/KyOaOQdX2UKGgGaAloD0MIiC6ob5nLJsCUhpRSlGgVSzJoFkdAPGE3CKrJbXV9lChoBmgJaA9DCMCxZ89lKiPAlIaUUpRoFUsyaBZHQD8Q7wKBuoB1fZQoaAZoCWgPQwhsPq4NFYMiwJSGlFKUaBVLMmgWR0BAzakyk9EDdX2UKGgGaAloD0MI3GJ+bmiqJsCUhpRSlGgVSzJoFkdAQg0yN4qwyXV9lChoBmgJaA9DCCB9k6ZBmS/AlIaUUpRoFUsyaBZHQENr8+iaiK11fZQoaAZoCWgPQwhW1GAahgcmwJSGlFKUaBVLMmgWR0BEwQFkhA4XdX2UKGgGaAloD0MIshGI1/XrLcCUhpRSlGgVSzJoFkdARhxHAh0QsnV9lChoBmgJaA9DCCxJnuv7CCnAlIaUUpRoFUsyaBZHQEdiH4XXRPZ1fZQoaAZoCWgPQwgjZYuk3dgnwJSGlFKUaBVLMmgWR0BIw3MyJsO5dX2UKGgGaAloD0MIzeodbofeJMCUhpRSlGgVSzJoFkdASiB0EHMUy3V9lChoBmgJaA9DCNuJkpBIUyjAlIaUUpRoFUsyaBZHQEtmX3QD3dt1fZQoaAZoCWgPQwjJ5xVPPRoswJSGlFKUaBVLMmgWR0BMu0vPC2tudX2UKGgGaAloD0MIey5Tk+B9J8CUhpRSlGgVSzJoFkdATh0JKJ2t+3V9lChoBmgJaA9DCESi0LLuXyzAlIaUUpRoFUsyaBZHQE91yBClabF1fZQoaAZoCWgPQwgdjq7S3fUlwJSGlFKUaBVLMmgWR0BQZ5IDoyKvdX2UKGgGaAloD0MImx4UlKKFJcCUhpRSlGgVSzJoFkdAUQ7VWjoIOnV9lChoBmgJaA9DCOY+OQoQVR3AlIaUUpRoFUsyaBZHQFG+D2Jzkp91fZQoaAZoCWgPQwgnMnOBy1MkwJSGlFKUaBVLMmgWR0BSdIcJdB0IdX2UKGgGaAloD0MIYY4ev7cpKMCUhpRSlGgVSzJoFkdAUyFBw++ueXV9lChoBmgJaA9DCIbI6ev5ki7AlIaUUpRoFUsyaBZHQFPPtjTa0yB1fZQoaAZoCWgPQwigGi/dJE4lwJSGlFKUaBVLMmgWR0BUeSQgcLjQdX2UKGgGaAloD0MIL4oe+Bh0JsCUhpRSlGgVSzJoFkdAVS2qLjxTbXV9lChoBmgJaA9DCCVZh6OrZCHAlIaUUpRoFUsyaBZHQFXTHqeK8+R1fZQoaAZoCWgPQwgv/OB86tgqwJSGlFKUaBVLMmgWR0BWf690zTF3dX2UKGgGaAloD0MIcR3jiovLK8CUhpRSlGgVSzJoFkdAVy2AVfu1GHV9lChoBmgJaA9DCP8kPneCxS3AlIaUUpRoFUsyaBZHQFfhf2saKk51fZQoaAZoCWgPQwg91LZhFPQfwJSGlFKUaBVLMmgWR0BYjGPLgXMydX2UKGgGaAloD0MI1Em2upyiI8CUhpRSlGgVSzJoFkdAWTzapPykK3V9lChoBmgJaA9DCBk5C3va4SjAlIaUUpRoFUsyaBZHQFntcBU70Wd1fZQoaAZoCWgPQwiXV663zYQowJSGlFKUaBVLMmgWR0Balu3+dbxFdX2UKGgGaAloD0MIWFTE6ST7K8CUhpRSlGgVSzJoFkdAW0gQtjCpFXV9lChoBmgJaA9DCD9ya9JtmSDAlIaUUpRoFUsyaBZHQFvrxVyWAwx1fZQoaAZoCWgPQwgqyM9GrgspwJSGlFKUaBVLMmgWR0Bcm/RArxy5dX2UKGgGaAloD0MIdENTdvrhLsCUhpRSlGgVSzJoFkdAXUVvLowEhnV9lChoBmgJaA9DCHcrS3SWaSrAlIaUUpRoFUsyaBZHQF3uTn7pFCt1fZQoaAZoCWgPQwhVvfxOk+kXwJSGlFKUaBVLMmgWR0Bem5w4sEq2dX2UKGgGaAloD0MIFTYDXJBlK8CUhpRSlGgVSzJoFkdAX0RuzhP0qnV9lChoBmgJaA9DCJP+XgoPoibAlIaUUpRoFUsyaBZHQF/mV9Wp6yB1fZQoaAZoCWgPQwjTEiujkV8gwJSGlFKUaBVLMmgWR0BgRLpC8e0YdX2UKGgGaAloD0MI6LtbWaLjHcCUhpRSlGgVSzJoFkdAYJpmYjSofnV9lChoBmgJaA9DCFfqWRDK2yDAlIaUUpRoFUsyaBZHQGDygskIHC51fZQoaAZoCWgPQwiNYU7QJsciwJSGlFKUaBVLMmgWR0BhSyx7iQ1adX2UKGgGaAloD0MIo1uv6UFJI8CUhpRSlGgVSzJoFkdAYaN0DEFW4nV9lChoBmgJaA9DCB9q2zAK8hjAlIaUUpRoFUsyaBZHQGIDxJd0JWx1fZQoaAZoCWgPQwjsTQzJybwkwJSGlFKUaBVLMmgWR0BiekZm7J4jdX2UKGgGaAloD0MIQWZn0TtFGcCUhpRSlGgVSzJoFkdAYtJZJTVDr3V9lChoBmgJaA9DCPfkYaHW9BTAlIaUUpRoFUsyaBZHQGMpbo0Q9Rt1fZQoaAZoCWgPQwj0TZoGRSMswJSGlFKUaBVLMmgWR0Bje1fTkQwsdX2UKGgGaAloD0MIwr8IGjPxIcCUhpRSlGgVSzJoFkdAY8uNtqHoHXV9lChoBmgJaA9DCCibcoV3US7AlIaUUpRoFUsyaBZHQGQjAw482aV1fZQoaAZoCWgPQwg6zm3CvTolwJSGlFKUaBVLMmgWR0BkePVsk6cRdX2UKGgGaAloD0MIy59vC5baIsCUhpRSlGgVSzJoFkdAZNBDQZ4wAXV9lChoBmgJaA9DCNh+MsaHkSLAlIaUUpRoFUsyaBZHQGUlIj4YaYN1fZQoaAZoCWgPQwgcCMkCJjgmwJSGlFKUaBVLMmgWR0BlgvW4EwFldX2UKGgGaAloD0MIEjKQZ5e/JsCUhpRSlGgVSzJoFkdAZddDF6zE8HV9lChoBmgJaA9DCBgHl445jxvAlIaUUpRoFUsyaBZHQGY2LXDm8ul1fZQoaAZoCWgPQwi/ZOPBFrslwJSGlFKUaBVLMmgWR0BmkAJ1JUYLdX2UKGgGaAloD0MIxQH0+/7tEcCUhpRSlGgVSzJoFkdAZu/w/gR9PXV9lChoBmgJaA9DCFwbKsb5mx7AlIaUUpRoFUsyaBZHQGdGLpRoAXF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVrwgAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 3401, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f4e2f29c4c0>", "add": "<function DictReplayBuffer.add at 0x7f4e2f29c550>", "sample": "<function DictReplayBuffer.sample at 0x7f4e2f29c5e0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f4e2f29c670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f314e10>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": {":type:": "<class 'numpy.float32'>", ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="}, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (623 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -11.8868273, "std_reward": 3.14705964072917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T21:07:41.975865"}
|
tqc-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1df9a071b74fd28b1b5dc48372de0e13b2d059fab6c906e67e1d111c0769985d
|
3 |
+
size 3340969
|
tqc-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
tqc-PandaReachDense-v2/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f831a345f2fcb5879add1ce560fbfae173377f95c39fb43d19a1fd9f2d20e782
|
3 |
+
size 571549
|
tqc-PandaReachDense-v2/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eab448f0ea7bc3a2c6e62007053bde1cbbb6c8aae9d016f3416d955fe20d6da
|
3 |
+
size 1230073
|
tqc-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7f4e2f18faf0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f4e2f1912a0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"n_critics": 2,
|
14 |
+
"n_quantiles": 25,
|
15 |
+
"use_sde": false
|
16 |
+
},
|
17 |
+
"observation_space": {
|
18 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
19 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
20 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
21 |
+
"_shape": null,
|
22 |
+
"dtype": null,
|
23 |
+
"_np_random": null
|
24 |
+
},
|
25 |
+
"action_space": {
|
26 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
27 |
+
":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADv7owQJkAqD93g4QCgyrfoUWEQuRD/0G/X6eh50ibiC8jblPZ5HPhjV5kBFzGxv9lje7qvWxpME5DbmEiA+1+LOWy0iabk7KPZIHUPrgLUnVtQTLUXrXbRy+RCSq1IxhywTl6ptDwYUsf9IZQ+h7n9dUVT2RiqVZrZMEG3cqlU01Qzk/a+M47GG/WWCVwYf8yyDqx/bbdrEXcLOkH0fnZzGgUWLx828EYmVKXCMlQPsneYjxhMvffA0QNa1AK6nctEsWeoeJ/F78QCZgVkKeNc2p5RBZt20nwBLtH1UiNesTmG7cydgrXw5Kz53o0IHe1ZWAZZKsIt70MsGmq7/h9x4IHsZ2gdK5WlNuErBzvOXvgTC/HBExv3c9o4tuEnu9ArB2Tm2ObFMGASSlL582kHB/B/pQAu/PpL/FdMlFeABKJaL8mNR4ay3jjSLnFGl9jste5saDcBD0e6QYljQByGSsGhjR1vKHSGMHXZhEFQoxD0LWKtYWXjqrk+WFXFLRXEZA1QQkBAT6YLVJrtzytQfbeZSW8AzSgvj17y09OViZN9so2IrA1keJ3Dupc6T9BQzucuCyTUWZDbnYKKhvixKKlZmwqPsZf1UB9YAZdY7txWKswATip7IqjiDICQCWSYYUiBLysCQfC4pgS4VuzHWkGPBejAfq/PCk49vB+o4oL109/QWthHyLRfXchfIBmAPH5bejla/4JcWDC57/jULwR2XgAvBMowBipTLZaFiaCtW4Nde3cqL3LNxdQi0AedjvjkP7JkB6CQyeyUcx5uaIEyjXV4/TaLx9UHzr7jGJCkIGoIqGYydlJ8HFbwJFtXD8bvaURoCpx0ssMhI5aokPNHLPIbqEvtqExFL5sYlnpU7Frh8yHK/Qf01XKXJHvrpzEWzjbT0G+/hXIJBllxA3R2OJjSSf01Rt9k0cGNbXmp8tGso9Sw5yYuoh+PUA8zbh4ZSBGe9l6ncg6KxJmcLY8QGV7DJIFKy23m6pjUErwnLW8jpjBmOtFrOk17hIDsDnOi5HAu/cYGCeAFMTfKcgdgCDSIl0l640rdyUH62rJxMvC3Sa/s/VveS6CybN8lL/jfk3zcXF46Gw7Ja5AO/2CN1oMF5Y38yzpTLvyG+0dhvpRb7LFyvAHY6SmToFKj1Pk16OssK62iXcTyetQihLTAPKFlXbIRzH2ZcrmXIt8MAY4rkh5atk/p1+KmTqMsWrH5He5JJxUBxGgfl9s6BcDxXHR4vWJSFR4+N7sOQHuzsQP5cJ5FeoQc5SmCblW2i9GLVN4MTIurhmSZ7F07Gbqv12Vx7Cqpgc9AGImY+1QNov1ZjQBOMzgk6GwEI6mKXM+/DF/hPtzrQLPUA481zno5afyQdsB2d4Z5kUDD0/Tt4gleNeEGYc1DSUVz4GEsdC0fACWK3oOb4V5e0uMRoZ7yQRJ7KWbHz1ZO3D0UGjlsB6WFvoSV8OywQ+nJq3k6aCtb175MtFcaaORek8gIjQ8AUURUWJ9/9roVCChC7SK1MPgGRRjWTZUTqg6IN5Ta90+IMjZqhq89TtlaPtg8AK/ZfDQbKWsd8egho/Ny98arbHvytv5XbfLUmuu4W1bt1PW5rNOUWcSDp3NqAesVUyp7ebDRSW9IMZpySAiRQeN8TYzytxvfNJ66VbJyz3eKjL1c8hinaiHhPkhMKBM2PHvtlycB4ryVa31vQajRoNaa8XHZbbRSosz941YaIfYO+z7p0NRTUqSWnBY/Fu++Af7xwbFCMFtP6NZX2fjApxTSZyW+32YS4nMc+IVAPMrNuKIwELtMuLP2D75QPv54eA1sXnt32Ild6LcjW0MG0r63P6ykn/SEB3DGxWHq07t3xqdV+6YTrCNv60c7uiK7XPfcP25hmLL6/UW6fjuPbq1y/ZXh4Umvnseuu4uqRCUUuLCrRUNOjZuR2pLd9cD+LMz+JtM+uTCWnTWMxZubDF5RvzTlbQL88mivuzNm4cJ4/Ou53gfhT2iDoKShEGcC5ZVJ0BSv7SftU2tVa3MlXnl5mI1osrkkWPnHOmRvVS07vjETyGVnXz3r8//HfGo81uoS5OexXCQZuXL+1pkuXw2qcIz2jlcS6RxIM2W43zQ0TnR0oS0GMYSYV7GG309Sy3PotM/rrNo03XORBz8YA7QayWWrZD/ljbO2wRLfetWREg+qDEt88YciaNOhzqzS/kmGstkC5ILjr31N25WW2YFcp7hY+CDidTE4Mf8tam63GqQY9j76JoAhF28IvihMfGeRfWpGtyUXDOWD1+wFqAwnAbajEOQm5c2i/BdorHp9hHL4cASkr7yCWeI+enFhrBsQiyCRUfHtfPOONM47XHjULTNhn7hEvuf7EtJ9J8WwXQu3o82saIkNrv0w7LEawKUhcq0fiNvc6fXqwp+zPHI0kFyMXMUQqsh19xjQ2en+WX2WOl6Z3NmYKIselaHzIcmndNxtBbW/E0ZY8ss6DlW/MU8i8+WZiou8iAIgbFoAljColHGSHTY2jAFmPtFyeEL0kGXygIJEnVfScBQBQrtD/OK/lUuWpClIHI6u/jWJfaj5wqedU3q2kokNxiOhrqbfodp8IozzHXQdDULTamD9LEhiSuu7IeL8IkdzJ4+ZkZkp98GMAHVmJmPE/IUh2TbpOf+znx9sVJfKxi02S2ah/3PUvURVtR9skgIwRivhURBDOTYnQysmoQZk57yjbXh8jIOBih7cVNyr3NOyDEHJkIAJBfdsYCQ7BkGsJItV/LLZgP9Rkto1IVYGuK+9qaXGRFsxuwkzVXf+J8Sg8UyecjFrWugZ+APT2js2vf+LPUjc2g5cBDgbdJcJEc6LFjNy097epNQTRhNKtC9zdDN1y2jG+0Pld2tx2nNA5gGlgabQI6TLgcVd2kapJWRRRNrWLgWRTkqyXIqlt4LR0ZzTY4j29NzmDkUIlM7bg3NRui82cLWcM8MdUii/4gAMJrxpAZa+gl0hBCOyhOcM2q04oc1DoHwN7g1YsmnSx2d3oBjLL7DYVytIu5OuMnI62V5jotEn5f95UlScRFydvFdHpPXnjGpjcGk0ry1J5jfkGRu8R8s/TKXa/S2HJs0+rXuQDv8YzATusNRKrBYQX7kMpOwhRJmfxwEip/g62EvEnBDasOTZbMuEygTguHGc1L63/W/PsxNEeHm1o+jUXjrMZbIBRh6y9Bdd5ImC1+WyAi5JrAG49hzocMkU4fztJ8HhFNGQU1aKz5UzLpxpHElymQ2iIyAZUgdZhedHZ/9/pTuXZbqj4Sg+oSO3SQm0Gi2dKL8+8Cyk5LlsBK9mig33AbF8OxourYTdxpyJOuWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
28 |
+
"dtype": "float32",
|
29 |
+
"_shape": [
|
30 |
+
3
|
31 |
+
],
|
32 |
+
"low": "[-1. -1. -1.]",
|
33 |
+
"high": "[1. 1. 1.]",
|
34 |
+
"bounded_below": "[ True True True]",
|
35 |
+
"bounded_above": "[ True True True]",
|
36 |
+
"_np_random": "RandomState(MT19937)"
|
37 |
+
},
|
38 |
+
"n_envs": 1,
|
39 |
+
"num_timesteps": 3502,
|
40 |
+
"_total_timesteps": 10000,
|
41 |
+
"_num_timesteps_at_start": 0,
|
42 |
+
"seed": null,
|
43 |
+
"action_noise": null,
|
44 |
+
"start_time": 1672434095313378320,
|
45 |
+
"learning_rate": 0.0003,
|
46 |
+
"tensorboard_log": null,
|
47 |
+
"lr_schedule": {
|
48 |
+
":type:": "<class 'function'>",
|
49 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
50 |
+
},
|
51 |
+
"_last_obs": {
|
52 |
+
":type:": "<class 'collections.OrderedDict'>",
|
53 |
+
":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA854IPRMXpDtJxHI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADzngg9ExekO0nEcj561d69XPX6vp/y+j6UaA5LAUsGhpRoEnSUUpR1Lg==",
|
54 |
+
"achieved_goal": "[[0.03335471 0.00500763 0.2370769 ]]",
|
55 |
+
"desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]",
|
56 |
+
"observation": "[[ 0.03335471 0.00500763 0.2370769 -0.10880561 -0.4901532 0.4901323 ]]"
|
57 |
+
},
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": {
|
63 |
+
":type:": "<class 'collections.OrderedDict'>",
|
64 |
+
":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAw0Q/PQeIiDxphFo+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADDRD89B4iIPGmEWj5rvIY+eFCaPpNtJz+UaA5LAUsGhpRoEnSUUpR1Lg==",
|
65 |
+
"achieved_goal": "[[0.04669644 0.01666643 0.21339573]]",
|
66 |
+
"desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]",
|
67 |
+
"observation": "[[0.04669644 0.01666643 0.21339573 0.26315627 0.30139518 0.6540157 ]]"
|
68 |
+
},
|
69 |
+
"_episode_num": 70,
|
70 |
+
"use_sde": false,
|
71 |
+
"sde_sample_freq": -1,
|
72 |
+
"_current_progress_remaining": 0.6497999999999999,
|
73 |
+
"ep_info_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVbQsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV7JjIxAfGMCUhpRSlIwBbJRLMowBdJRHP9UZwXIlt0p1fZQoaAZoCWgPQwiCqtGrAfokwJSGlFKUaBVLMmgWRz/dvBacI7eVdX2UKGgGaAloD0MIguZz7nZNM8CUhpRSlGgVSzJoFkdACCRW912aD3V9lChoBmgJaA9DCKcHBaVoBSHAlIaUUpRoFUsyaBZHQBb+kgwGnoB1fZQoaAZoCWgPQwjyfXGpSvskwJSGlFKUaBVLMmgWR0Ag0kYXO4XodX2UKGgGaAloD0MIkq6ZfLMFL8CUhpRSlGgVSzJoFkdAJkQyIpH7QHV9lChoBmgJaA9DCP3AVZ5ASCzAlIaUUpRoFUsyaBZHQCuhjYqXnhd1fZQoaAZoCWgPQwhtVRLZB7kdwJSGlFKUaBVLMmgWR0Aw2yuZCv5hdX2UKGgGaAloD0MI+kLIef//IsCUhpRSlGgVSzJoFkdANHOpfhMrVnV9lChoBmgJaA9DCH6s4Lch5iXAlIaUUpRoFUsyaBZHQDcDk/8l5W11fZQoaAZoCWgPQwhycOmY8/gxwJSGlFKUaBVLMmgWR0A5r/KyOaOQdX2UKGgGaAloD0MIiC6ob5nLJsCUhpRSlGgVSzJoFkdAPGE3CKrJbXV9lChoBmgJaA9DCMCxZ89lKiPAlIaUUpRoFUsyaBZHQD8Q7wKBuoB1fZQoaAZoCWgPQwhsPq4NFYMiwJSGlFKUaBVLMmgWR0BAzakyk9EDdX2UKGgGaAloD0MI3GJ+bmiqJsCUhpRSlGgVSzJoFkdAQg0yN4qwyXV9lChoBmgJaA9DCCB9k6ZBmS/AlIaUUpRoFUsyaBZHQENr8+iaiK11fZQoaAZoCWgPQwhW1GAahgcmwJSGlFKUaBVLMmgWR0BEwQFkhA4XdX2UKGgGaAloD0MIshGI1/XrLcCUhpRSlGgVSzJoFkdARhxHAh0QsnV9lChoBmgJaA9DCCxJnuv7CCnAlIaUUpRoFUsyaBZHQEdiH4XXRPZ1fZQoaAZoCWgPQwgjZYuk3dgnwJSGlFKUaBVLMmgWR0BIw3MyJsO5dX2UKGgGaAloD0MIzeodbofeJMCUhpRSlGgVSzJoFkdASiB0EHMUy3V9lChoBmgJaA9DCNuJkpBIUyjAlIaUUpRoFUsyaBZHQEtmX3QD3dt1fZQoaAZoCWgPQwjJ5xVPPRoswJSGlFKUaBVLMmgWR0BMu0vPC2tudX2UKGgGaAloD0MIey5Tk+B9J8CUhpRSlGgVSzJoFkdATh0JKJ2t+3V9lChoBmgJaA9DCESi0LLuXyzAlIaUUpRoFUsyaBZHQE91yBClabF1fZQoaAZoCWgPQwgdjq7S3fUlwJSGlFKUaBVLMmgWR0BQZ5IDoyKvdX2UKGgGaAloD0MImx4UlKKFJcCUhpRSlGgVSzJoFkdAUQ7VWjoIOnV9lChoBmgJaA9DCOY+OQoQVR3AlIaUUpRoFUsyaBZHQFG+D2Jzkp91fZQoaAZoCWgPQwgnMnOBy1MkwJSGlFKUaBVLMmgWR0BSdIcJdB0IdX2UKGgGaAloD0MIYY4ev7cpKMCUhpRSlGgVSzJoFkdAUyFBw++ueXV9lChoBmgJaA9DCIbI6ev5ki7AlIaUUpRoFUsyaBZHQFPPtjTa0yB1fZQoaAZoCWgPQwigGi/dJE4lwJSGlFKUaBVLMmgWR0BUeSQgcLjQdX2UKGgGaAloD0MIL4oe+Bh0JsCUhpRSlGgVSzJoFkdAVS2qLjxTbXV9lChoBmgJaA9DCCVZh6OrZCHAlIaUUpRoFUsyaBZHQFXTHqeK8+R1fZQoaAZoCWgPQwgv/OB86tgqwJSGlFKUaBVLMmgWR0BWf690zTF3dX2UKGgGaAloD0MIcR3jiovLK8CUhpRSlGgVSzJoFkdAVy2AVfu1GHV9lChoBmgJaA9DCP8kPneCxS3AlIaUUpRoFUsyaBZHQFfhf2saKk51fZQoaAZoCWgPQwg91LZhFPQfwJSGlFKUaBVLMmgWR0BYjGPLgXMydX2UKGgGaAloD0MI1Em2upyiI8CUhpRSlGgVSzJoFkdAWTzapPykK3V9lChoBmgJaA9DCBk5C3va4SjAlIaUUpRoFUsyaBZHQFntcBU70Wd1fZQoaAZoCWgPQwiXV663zYQowJSGlFKUaBVLMmgWR0Balu3+dbxFdX2UKGgGaAloD0MIWFTE6ST7K8CUhpRSlGgVSzJoFkdAW0gQtjCpFXV9lChoBmgJaA9DCD9ya9JtmSDAlIaUUpRoFUsyaBZHQFvrxVyWAwx1fZQoaAZoCWgPQwgqyM9GrgspwJSGlFKUaBVLMmgWR0Bcm/RArxy5dX2UKGgGaAloD0MIdENTdvrhLsCUhpRSlGgVSzJoFkdAXUVvLowEhnV9lChoBmgJaA9DCHcrS3SWaSrAlIaUUpRoFUsyaBZHQF3uTn7pFCt1fZQoaAZoCWgPQwhVvfxOk+kXwJSGlFKUaBVLMmgWR0Bem5w4sEq2dX2UKGgGaAloD0MIFTYDXJBlK8CUhpRSlGgVSzJoFkdAX0RuzhP0qnV9lChoBmgJaA9DCJP+XgoPoibAlIaUUpRoFUsyaBZHQF/mV9Wp6yB1fZQoaAZoCWgPQwjTEiujkV8gwJSGlFKUaBVLMmgWR0BgRLpC8e0YdX2UKGgGaAloD0MI6LtbWaLjHcCUhpRSlGgVSzJoFkdAYJpmYjSofnV9lChoBmgJaA9DCFfqWRDK2yDAlIaUUpRoFUsyaBZHQGDygskIHC51fZQoaAZoCWgPQwiNYU7QJsciwJSGlFKUaBVLMmgWR0BhSyx7iQ1adX2UKGgGaAloD0MIo1uv6UFJI8CUhpRSlGgVSzJoFkdAYaN0DEFW4nV9lChoBmgJaA9DCB9q2zAK8hjAlIaUUpRoFUsyaBZHQGIDxJd0JWx1fZQoaAZoCWgPQwjsTQzJybwkwJSGlFKUaBVLMmgWR0BiekZm7J4jdX2UKGgGaAloD0MIQWZn0TtFGcCUhpRSlGgVSzJoFkdAYtJZJTVDr3V9lChoBmgJaA9DCPfkYaHW9BTAlIaUUpRoFUsyaBZHQGMpbo0Q9Rt1fZQoaAZoCWgPQwj0TZoGRSMswJSGlFKUaBVLMmgWR0Bje1fTkQwsdX2UKGgGaAloD0MIwr8IGjPxIcCUhpRSlGgVSzJoFkdAY8uNtqHoHXV9lChoBmgJaA9DCCibcoV3US7AlIaUUpRoFUsyaBZHQGQjAw482aV1fZQoaAZoCWgPQwg6zm3CvTolwJSGlFKUaBVLMmgWR0BkePVsk6cRdX2UKGgGaAloD0MIy59vC5baIsCUhpRSlGgVSzJoFkdAZNBDQZ4wAXV9lChoBmgJaA9DCNh+MsaHkSLAlIaUUpRoFUsyaBZHQGUlIj4YaYN1fZQoaAZoCWgPQwgcCMkCJjgmwJSGlFKUaBVLMmgWR0BlgvW4EwFldX2UKGgGaAloD0MIEjKQZ5e/JsCUhpRSlGgVSzJoFkdAZddDF6zE8HV9lChoBmgJaA9DCBgHl445jxvAlIaUUpRoFUsyaBZHQGY2LXDm8ul1fZQoaAZoCWgPQwi/ZOPBFrslwJSGlFKUaBVLMmgWR0BmkAJ1JUYLdX2UKGgGaAloD0MIxQH0+/7tEcCUhpRSlGgVSzJoFkdAZu/w/gR9PXV9lChoBmgJaA9DCFwbKsb5mx7AlIaUUpRoFUsyaBZHQGdGLpRoAXF1ZS4="
|
76 |
+
},
|
77 |
+
"ep_success_buffer": {
|
78 |
+
":type:": "<class 'collections.deque'>",
|
79 |
+
":serialized:": "gAWVrwgAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="
|
80 |
+
},
|
81 |
+
"_n_updates": 3401,
|
82 |
+
"buffer_size": 1000000,
|
83 |
+
"batch_size": 256,
|
84 |
+
"learning_starts": 100,
|
85 |
+
"tau": 0.005,
|
86 |
+
"gamma": 0.99,
|
87 |
+
"gradient_steps": 1,
|
88 |
+
"optimize_memory_usage": false,
|
89 |
+
"replay_buffer_class": {
|
90 |
+
":type:": "<class 'abc.ABCMeta'>",
|
91 |
+
":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
|
92 |
+
"__module__": "stable_baselines3.common.buffers",
|
93 |
+
"__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
94 |
+
"__init__": "<function DictReplayBuffer.__init__ at 0x7f4e2f29c4c0>",
|
95 |
+
"add": "<function DictReplayBuffer.add at 0x7f4e2f29c550>",
|
96 |
+
"sample": "<function DictReplayBuffer.sample at 0x7f4e2f29c5e0>",
|
97 |
+
"_get_samples": "<function DictReplayBuffer._get_samples at 0x7f4e2f29c670>",
|
98 |
+
"__abstractmethods__": "frozenset()",
|
99 |
+
"_abc_impl": "<_abc_data object at 0x7f4e2f314e10>"
|
100 |
+
},
|
101 |
+
"replay_buffer_kwargs": {},
|
102 |
+
"train_freq": {
|
103 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
104 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
105 |
+
},
|
106 |
+
"use_sde_at_warmup": false,
|
107 |
+
"target_entropy": {
|
108 |
+
":type:": "<class 'numpy.float32'>",
|
109 |
+
":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="
|
110 |
+
},
|
111 |
+
"ent_coef": "auto",
|
112 |
+
"target_update_interval": 1,
|
113 |
+
"top_quantiles_to_drop_per_net": 2,
|
114 |
+
"batch_norm_stats": [],
|
115 |
+
"batch_norm_stats_target": []
|
116 |
+
}
|
tqc-PandaReachDense-v2/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb3c3ef9b6137ed5d1e1939db5de535fb502ad808f011ba1e6537a93e61c6e0d
|
3 |
+
size 1507
|
tqc-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87a2076753c07e8dd9967294352c45c1948f46b5c875226beb296660da7b5493
|
3 |
+
size 1514757
|
tqc-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95f6bef1d4d01526ffa7be07ff541811861de15cdbe95c7d04179713923a399c
|
3 |
+
size 747
|
tqc-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|