ThomasSimonini HF staff commited on
Commit
b16fdd3
·
1 Parent(s): 6238925

Test commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -11.89 +/- 3.15
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **TQC** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "sb3_contrib.tqc.policies", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f4e2f18faf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f1912a0>"}, "verbose": 1, "policy_kwargs": {"n_critics": 2, "n_quantiles": 25, "use_sde": false}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADv7owQJkAqD93g4QCgyrfoUWEQuRD/0G/X6eh50ibiC8jblPZ5HPhjV5kBFzGxv9lje7qvWxpME5DbmEiA+1+LOWy0iabk7KPZIHUPrgLUnVtQTLUXrXbRy+RCSq1IxhywTl6ptDwYUsf9IZQ+h7n9dUVT2RiqVZrZMEG3cqlU01Qzk/a+M47GG/WWCVwYf8yyDqx/bbdrEXcLOkH0fnZzGgUWLx828EYmVKXCMlQPsneYjxhMvffA0QNa1AK6nctEsWeoeJ/F78QCZgVkKeNc2p5RBZt20nwBLtH1UiNesTmG7cydgrXw5Kz53o0IHe1ZWAZZKsIt70MsGmq7/h9x4IHsZ2gdK5WlNuErBzvOXvgTC/HBExv3c9o4tuEnu9ArB2Tm2ObFMGASSlL582kHB/B/pQAu/PpL/FdMlFeABKJaL8mNR4ay3jjSLnFGl9jste5saDcBD0e6QYljQByGSsGhjR1vKHSGMHXZhEFQoxD0LWKtYWXjqrk+WFXFLRXEZA1QQkBAT6YLVJrtzytQfbeZSW8AzSgvj17y09OViZN9so2IrA1keJ3Dupc6T9BQzucuCyTUWZDbnYKKhvixKKlZmwqPsZf1UB9YAZdY7txWKswATip7IqjiDICQCWSYYUiBLysCQfC4pgS4VuzHWkGPBejAfq/PCk49vB+o4oL109/QWthHyLRfXchfIBmAPH5bejla/4JcWDC57/jULwR2XgAvBMowBipTLZaFiaCtW4Nde3cqL3LNxdQi0AedjvjkP7JkB6CQyeyUcx5uaIEyjXV4/TaLx9UHzr7jGJCkIGoIqGYydlJ8HFbwJFtXD8bvaURoCpx0ssMhI5aokPNHLPIbqEvtqExFL5sYlnpU7Frh8yHK/Qf01XKXJHvrpzEWzjbT0G+/hXIJBllxA3R2OJjSSf01Rt9k0cGNbXmp8tGso9Sw5yYuoh+PUA8zbh4ZSBGe9l6ncg6KxJmcLY8QGV7DJIFKy23m6pjUErwnLW8jpjBmOtFrOk17hIDsDnOi5HAu/cYGCeAFMTfKcgdgCDSIl0l640rdyUH62rJxMvC3Sa/s/VveS6CybN8lL/jfk3zcXF46Gw7Ja5AO/2CN1oMF5Y38yzpTLvyG+0dhvpRb7LFyvAHY6SmToFKj1Pk16OssK62iXcTyetQihLTAPKFlXbIRzH2ZcrmXIt8MAY4rkh5atk/p1+KmTqMsWrH5He5JJxUBxGgfl9s6BcDxXHR4vWJSFR4+N7sOQHuzsQP5cJ5FeoQc5SmCblW2i9GLVN4MTIurhmSZ7F07Gbqv12Vx7Cqpgc9AGImY+1QNov1ZjQBOMzgk6GwEI6mKXM+/DF/hPtzrQLPUA481zno5afyQdsB2d4Z5kUDD0/Tt4gleNeEGYc1DSUVz4GEsdC0fACWK3oOb4V5e0uMRoZ7yQRJ7KWbHz1ZO3D0UGjlsB6WFvoSV8OywQ+nJq3k6aCtb175MtFcaaORek8gIjQ8AUURUWJ9/9roVCChC7SK1MPgGRRjWTZUTqg6IN5Ta90+IMjZqhq89TtlaPtg8AK/ZfDQbKWsd8egho/Ny98arbHvytv5XbfLUmuu4W1bt1PW5rNOUWcSDp3NqAesVUyp7ebDRSW9IMZpySAiRQeN8TYzytxvfNJ66VbJyz3eKjL1c8hinaiHhPkhMKBM2PHvtlycB4ryVa31vQajRoNaa8XHZbbRSosz941YaIfYO+z7p0NRTUqSWnBY/Fu++Af7xwbFCMFtP6NZX2fjApxTSZyW+32YS4nMc+IVAPMrNuKIwELtMuLP2D75QPv54eA1sXnt32Ild6LcjW0MG0r63P6ykn/SEB3DGxWHq07t3xqdV+6YTrCNv60c7uiK7XPfcP25hmLL6/UW6fjuPbq1y/ZXh4Umvnseuu4uqRCUUuLCrRUNOjZuR2pLd9cD+LMz+JtM+uTCWnTWMxZubDF5RvzTlbQL88mivuzNm4cJ4/Ou53gfhT2iDoKShEGcC5ZVJ0BSv7SftU2tVa3MlXnl5mI1osrkkWPnHOmRvVS07vjETyGVnXz3r8//HfGo81uoS5OexXCQZuXL+1pkuXw2qcIz2jlcS6RxIM2W43zQ0TnR0oS0GMYSYV7GG309Sy3PotM/rrNo03XORBz8YA7QayWWrZD/ljbO2wRLfetWREg+qDEt88YciaNOhzqzS/kmGstkC5ILjr31N25WW2YFcp7hY+CDidTE4Mf8tam63GqQY9j76JoAhF28IvihMfGeRfWpGtyUXDOWD1+wFqAwnAbajEOQm5c2i/BdorHp9hHL4cASkr7yCWeI+enFhrBsQiyCRUfHtfPOONM47XHjULTNhn7hEvuf7EtJ9J8WwXQu3o82saIkNrv0w7LEawKUhcq0fiNvc6fXqwp+zPHI0kFyMXMUQqsh19xjQ2en+WX2WOl6Z3NmYKIselaHzIcmndNxtBbW/E0ZY8ss6DlW/MU8i8+WZiou8iAIgbFoAljColHGSHTY2jAFmPtFyeEL0kGXygIJEnVfScBQBQrtD/OK/lUuWpClIHI6u/jWJfaj5wqedU3q2kokNxiOhrqbfodp8IozzHXQdDULTamD9LEhiSuu7IeL8IkdzJ4+ZkZkp98GMAHVmJmPE/IUh2TbpOf+znx9sVJfKxi02S2ah/3PUvURVtR9skgIwRivhURBDOTYnQysmoQZk57yjbXh8jIOBih7cVNyr3NOyDEHJkIAJBfdsYCQ7BkGsJItV/LLZgP9Rkto1IVYGuK+9qaXGRFsxuwkzVXf+J8Sg8UyecjFrWugZ+APT2js2vf+LPUjc2g5cBDgbdJcJEc6LFjNy097epNQTRhNKtC9zdDN1y2jG+0Pld2tx2nNA5gGlgabQI6TLgcVd2kapJWRRRNrWLgWRTkqyXIqlt4LR0ZzTY4j29NzmDkUIlM7bg3NRui82cLWcM8MdUii/4gAMJrxpAZa+gl0hBCOyhOcM2q04oc1DoHwN7g1YsmnSx2d3oBjLL7DYVytIu5OuMnI62V5jotEn5f95UlScRFydvFdHpPXnjGpjcGk0ry1J5jfkGRu8R8s/TKXa/S2HJs0+rXuQDv8YzATusNRKrBYQX7kMpOwhRJmfxwEip/g62EvEnBDasOTZbMuEygTguHGc1L63/W/PsxNEeHm1o+jUXjrMZbIBRh6y9Bdd5ImC1+WyAi5JrAG49hzocMkU4fztJ8HhFNGQU1aKz5UzLpxpHElymQ2iIyAZUgdZhedHZ/9/pTuXZbqj4Sg+oSO3SQm0Gi2dKL8+8Cyk5LlsBK9mig33AbF8OxourYTdxpyJOuWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 3502, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672434095313378320, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA854IPRMXpDtJxHI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADzngg9ExekO0nEcj561d69XPX6vp/y+j6UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.03335471 0.00500763 0.2370769 ]]", "desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]", "observation": "[[ 0.03335471 0.00500763 0.2370769 -0.10880561 -0.4901532 0.4901323 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAw0Q/PQeIiDxphFo+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADDRD89B4iIPGmEWj5rvIY+eFCaPpNtJz+UaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.04669644 0.01666643 0.21339573]]", "desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]", "observation": "[[0.04669644 0.01666643 0.21339573 0.26315627 0.30139518 0.6540157 ]]"}, "_episode_num": 70, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.6497999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbQsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV7JjIxAfGMCUhpRSlIwBbJRLMowBdJRHP9UZwXIlt0p1fZQoaAZoCWgPQwiCqtGrAfokwJSGlFKUaBVLMmgWRz/dvBacI7eVdX2UKGgGaAloD0MIguZz7nZNM8CUhpRSlGgVSzJoFkdACCRW912aD3V9lChoBmgJaA9DCKcHBaVoBSHAlIaUUpRoFUsyaBZHQBb+kgwGnoB1fZQoaAZoCWgPQwjyfXGpSvskwJSGlFKUaBVLMmgWR0Ag0kYXO4XodX2UKGgGaAloD0MIkq6ZfLMFL8CUhpRSlGgVSzJoFkdAJkQyIpH7QHV9lChoBmgJaA9DCP3AVZ5ASCzAlIaUUpRoFUsyaBZHQCuhjYqXnhd1fZQoaAZoCWgPQwhtVRLZB7kdwJSGlFKUaBVLMmgWR0Aw2yuZCv5hdX2UKGgGaAloD0MI+kLIef//IsCUhpRSlGgVSzJoFkdANHOpfhMrVnV9lChoBmgJaA9DCH6s4Lch5iXAlIaUUpRoFUsyaBZHQDcDk/8l5W11fZQoaAZoCWgPQwhycOmY8/gxwJSGlFKUaBVLMmgWR0A5r/KyOaOQdX2UKGgGaAloD0MIiC6ob5nLJsCUhpRSlGgVSzJoFkdAPGE3CKrJbXV9lChoBmgJaA9DCMCxZ89lKiPAlIaUUpRoFUsyaBZHQD8Q7wKBuoB1fZQoaAZoCWgPQwhsPq4NFYMiwJSGlFKUaBVLMmgWR0BAzakyk9EDdX2UKGgGaAloD0MI3GJ+bmiqJsCUhpRSlGgVSzJoFkdAQg0yN4qwyXV9lChoBmgJaA9DCCB9k6ZBmS/AlIaUUpRoFUsyaBZHQENr8+iaiK11fZQoaAZoCWgPQwhW1GAahgcmwJSGlFKUaBVLMmgWR0BEwQFkhA4XdX2UKGgGaAloD0MIshGI1/XrLcCUhpRSlGgVSzJoFkdARhxHAh0QsnV9lChoBmgJaA9DCCxJnuv7CCnAlIaUUpRoFUsyaBZHQEdiH4XXRPZ1fZQoaAZoCWgPQwgjZYuk3dgnwJSGlFKUaBVLMmgWR0BIw3MyJsO5dX2UKGgGaAloD0MIzeodbofeJMCUhpRSlGgVSzJoFkdASiB0EHMUy3V9lChoBmgJaA9DCNuJkpBIUyjAlIaUUpRoFUsyaBZHQEtmX3QD3dt1fZQoaAZoCWgPQwjJ5xVPPRoswJSGlFKUaBVLMmgWR0BMu0vPC2tudX2UKGgGaAloD0MIey5Tk+B9J8CUhpRSlGgVSzJoFkdATh0JKJ2t+3V9lChoBmgJaA9DCESi0LLuXyzAlIaUUpRoFUsyaBZHQE91yBClabF1fZQoaAZoCWgPQwgdjq7S3fUlwJSGlFKUaBVLMmgWR0BQZ5IDoyKvdX2UKGgGaAloD0MImx4UlKKFJcCUhpRSlGgVSzJoFkdAUQ7VWjoIOnV9lChoBmgJaA9DCOY+OQoQVR3AlIaUUpRoFUsyaBZHQFG+D2Jzkp91fZQoaAZoCWgPQwgnMnOBy1MkwJSGlFKUaBVLMmgWR0BSdIcJdB0IdX2UKGgGaAloD0MIYY4ev7cpKMCUhpRSlGgVSzJoFkdAUyFBw++ueXV9lChoBmgJaA9DCIbI6ev5ki7AlIaUUpRoFUsyaBZHQFPPtjTa0yB1fZQoaAZoCWgPQwigGi/dJE4lwJSGlFKUaBVLMmgWR0BUeSQgcLjQdX2UKGgGaAloD0MIL4oe+Bh0JsCUhpRSlGgVSzJoFkdAVS2qLjxTbXV9lChoBmgJaA9DCCVZh6OrZCHAlIaUUpRoFUsyaBZHQFXTHqeK8+R1fZQoaAZoCWgPQwgv/OB86tgqwJSGlFKUaBVLMmgWR0BWf690zTF3dX2UKGgGaAloD0MIcR3jiovLK8CUhpRSlGgVSzJoFkdAVy2AVfu1GHV9lChoBmgJaA9DCP8kPneCxS3AlIaUUpRoFUsyaBZHQFfhf2saKk51fZQoaAZoCWgPQwg91LZhFPQfwJSGlFKUaBVLMmgWR0BYjGPLgXMydX2UKGgGaAloD0MI1Em2upyiI8CUhpRSlGgVSzJoFkdAWTzapPykK3V9lChoBmgJaA9DCBk5C3va4SjAlIaUUpRoFUsyaBZHQFntcBU70Wd1fZQoaAZoCWgPQwiXV663zYQowJSGlFKUaBVLMmgWR0Balu3+dbxFdX2UKGgGaAloD0MIWFTE6ST7K8CUhpRSlGgVSzJoFkdAW0gQtjCpFXV9lChoBmgJaA9DCD9ya9JtmSDAlIaUUpRoFUsyaBZHQFvrxVyWAwx1fZQoaAZoCWgPQwgqyM9GrgspwJSGlFKUaBVLMmgWR0Bcm/RArxy5dX2UKGgGaAloD0MIdENTdvrhLsCUhpRSlGgVSzJoFkdAXUVvLowEhnV9lChoBmgJaA9DCHcrS3SWaSrAlIaUUpRoFUsyaBZHQF3uTn7pFCt1fZQoaAZoCWgPQwhVvfxOk+kXwJSGlFKUaBVLMmgWR0Bem5w4sEq2dX2UKGgGaAloD0MIFTYDXJBlK8CUhpRSlGgVSzJoFkdAX0RuzhP0qnV9lChoBmgJaA9DCJP+XgoPoibAlIaUUpRoFUsyaBZHQF/mV9Wp6yB1fZQoaAZoCWgPQwjTEiujkV8gwJSGlFKUaBVLMmgWR0BgRLpC8e0YdX2UKGgGaAloD0MI6LtbWaLjHcCUhpRSlGgVSzJoFkdAYJpmYjSofnV9lChoBmgJaA9DCFfqWRDK2yDAlIaUUpRoFUsyaBZHQGDygskIHC51fZQoaAZoCWgPQwiNYU7QJsciwJSGlFKUaBVLMmgWR0BhSyx7iQ1adX2UKGgGaAloD0MIo1uv6UFJI8CUhpRSlGgVSzJoFkdAYaN0DEFW4nV9lChoBmgJaA9DCB9q2zAK8hjAlIaUUpRoFUsyaBZHQGIDxJd0JWx1fZQoaAZoCWgPQwjsTQzJybwkwJSGlFKUaBVLMmgWR0BiekZm7J4jdX2UKGgGaAloD0MIQWZn0TtFGcCUhpRSlGgVSzJoFkdAYtJZJTVDr3V9lChoBmgJaA9DCPfkYaHW9BTAlIaUUpRoFUsyaBZHQGMpbo0Q9Rt1fZQoaAZoCWgPQwj0TZoGRSMswJSGlFKUaBVLMmgWR0Bje1fTkQwsdX2UKGgGaAloD0MIwr8IGjPxIcCUhpRSlGgVSzJoFkdAY8uNtqHoHXV9lChoBmgJaA9DCCibcoV3US7AlIaUUpRoFUsyaBZHQGQjAw482aV1fZQoaAZoCWgPQwg6zm3CvTolwJSGlFKUaBVLMmgWR0BkePVsk6cRdX2UKGgGaAloD0MIy59vC5baIsCUhpRSlGgVSzJoFkdAZNBDQZ4wAXV9lChoBmgJaA9DCNh+MsaHkSLAlIaUUpRoFUsyaBZHQGUlIj4YaYN1fZQoaAZoCWgPQwgcCMkCJjgmwJSGlFKUaBVLMmgWR0BlgvW4EwFldX2UKGgGaAloD0MIEjKQZ5e/JsCUhpRSlGgVSzJoFkdAZddDF6zE8HV9lChoBmgJaA9DCBgHl445jxvAlIaUUpRoFUsyaBZHQGY2LXDm8ul1fZQoaAZoCWgPQwi/ZOPBFrslwJSGlFKUaBVLMmgWR0BmkAJ1JUYLdX2UKGgGaAloD0MIxQH0+/7tEcCUhpRSlGgVSzJoFkdAZu/w/gR9PXV9lChoBmgJaA9DCFwbKsb5mx7AlIaUUpRoFUsyaBZHQGdGLpRoAXF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVrwgAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 3401, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f4e2f29c4c0>", "add": "<function DictReplayBuffer.add at 0x7f4e2f29c550>", "sample": "<function DictReplayBuffer.sample at 0x7f4e2f29c5e0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f4e2f29c670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f314e10>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": {":type:": "<class 'numpy.float32'>", ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="}, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (623 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -11.8868273, "std_reward": 3.14705964072917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T21:07:41.975865"}
tqc-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1df9a071b74fd28b1b5dc48372de0e13b2d059fab6c906e67e1d111c0769985d
3
+ size 3340969
tqc-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
tqc-PandaReachDense-v2/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f831a345f2fcb5879add1ce560fbfae173377f95c39fb43d19a1fd9f2d20e782
3
+ size 571549
tqc-PandaReachDense-v2/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eab448f0ea7bc3a2c6e62007053bde1cbbb6c8aae9d016f3416d955fe20d6da
3
+ size 1230073
tqc-PandaReachDense-v2/data ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7f4e2f18faf0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f4e2f1912a0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "n_critics": 2,
14
+ "n_quantiles": 25,
15
+ "use_sde": false
16
+ },
17
+ "observation_space": {
18
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
19
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
20
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
21
+ "_shape": null,
22
+ "dtype": null,
23
+ "_np_random": null
24
+ },
25
+ "action_space": {
26
+ ":type:": "<class 'gym.spaces.box.Box'>",
27
+ ":serialized:": "gAWV9QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAADv7owQJkAqD93g4QCgyrfoUWEQuRD/0G/X6eh50ibiC8jblPZ5HPhjV5kBFzGxv9lje7qvWxpME5DbmEiA+1+LOWy0iabk7KPZIHUPrgLUnVtQTLUXrXbRy+RCSq1IxhywTl6ptDwYUsf9IZQ+h7n9dUVT2RiqVZrZMEG3cqlU01Qzk/a+M47GG/WWCVwYf8yyDqx/bbdrEXcLOkH0fnZzGgUWLx828EYmVKXCMlQPsneYjxhMvffA0QNa1AK6nctEsWeoeJ/F78QCZgVkKeNc2p5RBZt20nwBLtH1UiNesTmG7cydgrXw5Kz53o0IHe1ZWAZZKsIt70MsGmq7/h9x4IHsZ2gdK5WlNuErBzvOXvgTC/HBExv3c9o4tuEnu9ArB2Tm2ObFMGASSlL582kHB/B/pQAu/PpL/FdMlFeABKJaL8mNR4ay3jjSLnFGl9jste5saDcBD0e6QYljQByGSsGhjR1vKHSGMHXZhEFQoxD0LWKtYWXjqrk+WFXFLRXEZA1QQkBAT6YLVJrtzytQfbeZSW8AzSgvj17y09OViZN9so2IrA1keJ3Dupc6T9BQzucuCyTUWZDbnYKKhvixKKlZmwqPsZf1UB9YAZdY7txWKswATip7IqjiDICQCWSYYUiBLysCQfC4pgS4VuzHWkGPBejAfq/PCk49vB+o4oL109/QWthHyLRfXchfIBmAPH5bejla/4JcWDC57/jULwR2XgAvBMowBipTLZaFiaCtW4Nde3cqL3LNxdQi0AedjvjkP7JkB6CQyeyUcx5uaIEyjXV4/TaLx9UHzr7jGJCkIGoIqGYydlJ8HFbwJFtXD8bvaURoCpx0ssMhI5aokPNHLPIbqEvtqExFL5sYlnpU7Frh8yHK/Qf01XKXJHvrpzEWzjbT0G+/hXIJBllxA3R2OJjSSf01Rt9k0cGNbXmp8tGso9Sw5yYuoh+PUA8zbh4ZSBGe9l6ncg6KxJmcLY8QGV7DJIFKy23m6pjUErwnLW8jpjBmOtFrOk17hIDsDnOi5HAu/cYGCeAFMTfKcgdgCDSIl0l640rdyUH62rJxMvC3Sa/s/VveS6CybN8lL/jfk3zcXF46Gw7Ja5AO/2CN1oMF5Y38yzpTLvyG+0dhvpRb7LFyvAHY6SmToFKj1Pk16OssK62iXcTyetQihLTAPKFlXbIRzH2ZcrmXIt8MAY4rkh5atk/p1+KmTqMsWrH5He5JJxUBxGgfl9s6BcDxXHR4vWJSFR4+N7sOQHuzsQP5cJ5FeoQc5SmCblW2i9GLVN4MTIurhmSZ7F07Gbqv12Vx7Cqpgc9AGImY+1QNov1ZjQBOMzgk6GwEI6mKXM+/DF/hPtzrQLPUA481zno5afyQdsB2d4Z5kUDD0/Tt4gleNeEGYc1DSUVz4GEsdC0fACWK3oOb4V5e0uMRoZ7yQRJ7KWbHz1ZO3D0UGjlsB6WFvoSV8OywQ+nJq3k6aCtb175MtFcaaORek8gIjQ8AUURUWJ9/9roVCChC7SK1MPgGRRjWTZUTqg6IN5Ta90+IMjZqhq89TtlaPtg8AK/ZfDQbKWsd8egho/Ny98arbHvytv5XbfLUmuu4W1bt1PW5rNOUWcSDp3NqAesVUyp7ebDRSW9IMZpySAiRQeN8TYzytxvfNJ66VbJyz3eKjL1c8hinaiHhPkhMKBM2PHvtlycB4ryVa31vQajRoNaa8XHZbbRSosz941YaIfYO+z7p0NRTUqSWnBY/Fu++Af7xwbFCMFtP6NZX2fjApxTSZyW+32YS4nMc+IVAPMrNuKIwELtMuLP2D75QPv54eA1sXnt32Ild6LcjW0MG0r63P6ykn/SEB3DGxWHq07t3xqdV+6YTrCNv60c7uiK7XPfcP25hmLL6/UW6fjuPbq1y/ZXh4Umvnseuu4uqRCUUuLCrRUNOjZuR2pLd9cD+LMz+JtM+uTCWnTWMxZubDF5RvzTlbQL88mivuzNm4cJ4/Ou53gfhT2iDoKShEGcC5ZVJ0BSv7SftU2tVa3MlXnl5mI1osrkkWPnHOmRvVS07vjETyGVnXz3r8//HfGo81uoS5OexXCQZuXL+1pkuXw2qcIz2jlcS6RxIM2W43zQ0TnR0oS0GMYSYV7GG309Sy3PotM/rrNo03XORBz8YA7QayWWrZD/ljbO2wRLfetWREg+qDEt88YciaNOhzqzS/kmGstkC5ILjr31N25WW2YFcp7hY+CDidTE4Mf8tam63GqQY9j76JoAhF28IvihMfGeRfWpGtyUXDOWD1+wFqAwnAbajEOQm5c2i/BdorHp9hHL4cASkr7yCWeI+enFhrBsQiyCRUfHtfPOONM47XHjULTNhn7hEvuf7EtJ9J8WwXQu3o82saIkNrv0w7LEawKUhcq0fiNvc6fXqwp+zPHI0kFyMXMUQqsh19xjQ2en+WX2WOl6Z3NmYKIselaHzIcmndNxtBbW/E0ZY8ss6DlW/MU8i8+WZiou8iAIgbFoAljColHGSHTY2jAFmPtFyeEL0kGXygIJEnVfScBQBQrtD/OK/lUuWpClIHI6u/jWJfaj5wqedU3q2kokNxiOhrqbfodp8IozzHXQdDULTamD9LEhiSuu7IeL8IkdzJ4+ZkZkp98GMAHVmJmPE/IUh2TbpOf+znx9sVJfKxi02S2ah/3PUvURVtR9skgIwRivhURBDOTYnQysmoQZk57yjbXh8jIOBih7cVNyr3NOyDEHJkIAJBfdsYCQ7BkGsJItV/LLZgP9Rkto1IVYGuK+9qaXGRFsxuwkzVXf+J8Sg8UyecjFrWugZ+APT2js2vf+LPUjc2g5cBDgbdJcJEc6LFjNy097epNQTRhNKtC9zdDN1y2jG+0Pld2tx2nNA5gGlgabQI6TLgcVd2kapJWRRRNrWLgWRTkqyXIqlt4LR0ZzTY4j29NzmDkUIlM7bg3NRui82cLWcM8MdUii/4gAMJrxpAZa+gl0hBCOyhOcM2q04oc1DoHwN7g1YsmnSx2d3oBjLL7DYVytIu5OuMnI62V5jotEn5f95UlScRFydvFdHpPXnjGpjcGk0ry1J5jfkGRu8R8s/TKXa/S2HJs0+rXuQDv8YzATusNRKrBYQX7kMpOwhRJmfxwEip/g62EvEnBDasOTZbMuEygTguHGc1L63/W/PsxNEeHm1o+jUXjrMZbIBRh6y9Bdd5ImC1+WyAi5JrAG49hzocMkU4fztJ8HhFNGQU1aKz5UzLpxpHElymQ2iIyAZUgdZhedHZ/9/pTuXZbqj4Sg+oSO3SQm0Gi2dKL8+8Cyk5LlsBK9mig33AbF8OxourYTdxpyJOuWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNWAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
28
+ "dtype": "float32",
29
+ "_shape": [
30
+ 3
31
+ ],
32
+ "low": "[-1. -1. -1.]",
33
+ "high": "[1. 1. 1.]",
34
+ "bounded_below": "[ True True True]",
35
+ "bounded_above": "[ True True True]",
36
+ "_np_random": "RandomState(MT19937)"
37
+ },
38
+ "n_envs": 1,
39
+ "num_timesteps": 3502,
40
+ "_total_timesteps": 10000,
41
+ "_num_timesteps_at_start": 0,
42
+ "seed": null,
43
+ "action_noise": null,
44
+ "start_time": 1672434095313378320,
45
+ "learning_rate": 0.0003,
46
+ "tensorboard_log": null,
47
+ "lr_schedule": {
48
+ ":type:": "<class 'function'>",
49
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
50
+ },
51
+ "_last_obs": {
52
+ ":type:": "<class 'collections.OrderedDict'>",
53
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA854IPRMXpDtJxHI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADzngg9ExekO0nEcj561d69XPX6vp/y+j6UaA5LAUsGhpRoEnSUUpR1Lg==",
54
+ "achieved_goal": "[[0.03335471 0.00500763 0.2370769 ]]",
55
+ "desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]",
56
+ "observation": "[[ 0.03335471 0.00500763 0.2370769 -0.10880561 -0.4901532 0.4901323 ]]"
57
+ },
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": {
63
+ ":type:": "<class 'collections.OrderedDict'>",
64
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAw0Q/PQeIiDxphFo+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAoJAQvgxZEr4D2549lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADDRD89B4iIPGmEWj5rvIY+eFCaPpNtJz+UaA5LAUsGhpRoEnSUUpR1Lg==",
65
+ "achieved_goal": "[[0.04669644 0.01666643 0.21339573]]",
66
+ "desired_goal": "[[-0.1411767 -0.14291781 0.07756617]]",
67
+ "observation": "[[0.04669644 0.01666643 0.21339573 0.26315627 0.30139518 0.6540157 ]]"
68
+ },
69
+ "_episode_num": 70,
70
+ "use_sde": false,
71
+ "sde_sample_freq": -1,
72
+ "_current_progress_remaining": 0.6497999999999999,
73
+ "ep_info_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVbQsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV7JjIxAfGMCUhpRSlIwBbJRLMowBdJRHP9UZwXIlt0p1fZQoaAZoCWgPQwiCqtGrAfokwJSGlFKUaBVLMmgWRz/dvBacI7eVdX2UKGgGaAloD0MIguZz7nZNM8CUhpRSlGgVSzJoFkdACCRW912aD3V9lChoBmgJaA9DCKcHBaVoBSHAlIaUUpRoFUsyaBZHQBb+kgwGnoB1fZQoaAZoCWgPQwjyfXGpSvskwJSGlFKUaBVLMmgWR0Ag0kYXO4XodX2UKGgGaAloD0MIkq6ZfLMFL8CUhpRSlGgVSzJoFkdAJkQyIpH7QHV9lChoBmgJaA9DCP3AVZ5ASCzAlIaUUpRoFUsyaBZHQCuhjYqXnhd1fZQoaAZoCWgPQwhtVRLZB7kdwJSGlFKUaBVLMmgWR0Aw2yuZCv5hdX2UKGgGaAloD0MI+kLIef//IsCUhpRSlGgVSzJoFkdANHOpfhMrVnV9lChoBmgJaA9DCH6s4Lch5iXAlIaUUpRoFUsyaBZHQDcDk/8l5W11fZQoaAZoCWgPQwhycOmY8/gxwJSGlFKUaBVLMmgWR0A5r/KyOaOQdX2UKGgGaAloD0MIiC6ob5nLJsCUhpRSlGgVSzJoFkdAPGE3CKrJbXV9lChoBmgJaA9DCMCxZ89lKiPAlIaUUpRoFUsyaBZHQD8Q7wKBuoB1fZQoaAZoCWgPQwhsPq4NFYMiwJSGlFKUaBVLMmgWR0BAzakyk9EDdX2UKGgGaAloD0MI3GJ+bmiqJsCUhpRSlGgVSzJoFkdAQg0yN4qwyXV9lChoBmgJaA9DCCB9k6ZBmS/AlIaUUpRoFUsyaBZHQENr8+iaiK11fZQoaAZoCWgPQwhW1GAahgcmwJSGlFKUaBVLMmgWR0BEwQFkhA4XdX2UKGgGaAloD0MIshGI1/XrLcCUhpRSlGgVSzJoFkdARhxHAh0QsnV9lChoBmgJaA9DCCxJnuv7CCnAlIaUUpRoFUsyaBZHQEdiH4XXRPZ1fZQoaAZoCWgPQwgjZYuk3dgnwJSGlFKUaBVLMmgWR0BIw3MyJsO5dX2UKGgGaAloD0MIzeodbofeJMCUhpRSlGgVSzJoFkdASiB0EHMUy3V9lChoBmgJaA9DCNuJkpBIUyjAlIaUUpRoFUsyaBZHQEtmX3QD3dt1fZQoaAZoCWgPQwjJ5xVPPRoswJSGlFKUaBVLMmgWR0BMu0vPC2tudX2UKGgGaAloD0MIey5Tk+B9J8CUhpRSlGgVSzJoFkdATh0JKJ2t+3V9lChoBmgJaA9DCESi0LLuXyzAlIaUUpRoFUsyaBZHQE91yBClabF1fZQoaAZoCWgPQwgdjq7S3fUlwJSGlFKUaBVLMmgWR0BQZ5IDoyKvdX2UKGgGaAloD0MImx4UlKKFJcCUhpRSlGgVSzJoFkdAUQ7VWjoIOnV9lChoBmgJaA9DCOY+OQoQVR3AlIaUUpRoFUsyaBZHQFG+D2Jzkp91fZQoaAZoCWgPQwgnMnOBy1MkwJSGlFKUaBVLMmgWR0BSdIcJdB0IdX2UKGgGaAloD0MIYY4ev7cpKMCUhpRSlGgVSzJoFkdAUyFBw++ueXV9lChoBmgJaA9DCIbI6ev5ki7AlIaUUpRoFUsyaBZHQFPPtjTa0yB1fZQoaAZoCWgPQwigGi/dJE4lwJSGlFKUaBVLMmgWR0BUeSQgcLjQdX2UKGgGaAloD0MIL4oe+Bh0JsCUhpRSlGgVSzJoFkdAVS2qLjxTbXV9lChoBmgJaA9DCCVZh6OrZCHAlIaUUpRoFUsyaBZHQFXTHqeK8+R1fZQoaAZoCWgPQwgv/OB86tgqwJSGlFKUaBVLMmgWR0BWf690zTF3dX2UKGgGaAloD0MIcR3jiovLK8CUhpRSlGgVSzJoFkdAVy2AVfu1GHV9lChoBmgJaA9DCP8kPneCxS3AlIaUUpRoFUsyaBZHQFfhf2saKk51fZQoaAZoCWgPQwg91LZhFPQfwJSGlFKUaBVLMmgWR0BYjGPLgXMydX2UKGgGaAloD0MI1Em2upyiI8CUhpRSlGgVSzJoFkdAWTzapPykK3V9lChoBmgJaA9DCBk5C3va4SjAlIaUUpRoFUsyaBZHQFntcBU70Wd1fZQoaAZoCWgPQwiXV663zYQowJSGlFKUaBVLMmgWR0Balu3+dbxFdX2UKGgGaAloD0MIWFTE6ST7K8CUhpRSlGgVSzJoFkdAW0gQtjCpFXV9lChoBmgJaA9DCD9ya9JtmSDAlIaUUpRoFUsyaBZHQFvrxVyWAwx1fZQoaAZoCWgPQwgqyM9GrgspwJSGlFKUaBVLMmgWR0Bcm/RArxy5dX2UKGgGaAloD0MIdENTdvrhLsCUhpRSlGgVSzJoFkdAXUVvLowEhnV9lChoBmgJaA9DCHcrS3SWaSrAlIaUUpRoFUsyaBZHQF3uTn7pFCt1fZQoaAZoCWgPQwhVvfxOk+kXwJSGlFKUaBVLMmgWR0Bem5w4sEq2dX2UKGgGaAloD0MIFTYDXJBlK8CUhpRSlGgVSzJoFkdAX0RuzhP0qnV9lChoBmgJaA9DCJP+XgoPoibAlIaUUpRoFUsyaBZHQF/mV9Wp6yB1fZQoaAZoCWgPQwjTEiujkV8gwJSGlFKUaBVLMmgWR0BgRLpC8e0YdX2UKGgGaAloD0MI6LtbWaLjHcCUhpRSlGgVSzJoFkdAYJpmYjSofnV9lChoBmgJaA9DCFfqWRDK2yDAlIaUUpRoFUsyaBZHQGDygskIHC51fZQoaAZoCWgPQwiNYU7QJsciwJSGlFKUaBVLMmgWR0BhSyx7iQ1adX2UKGgGaAloD0MIo1uv6UFJI8CUhpRSlGgVSzJoFkdAYaN0DEFW4nV9lChoBmgJaA9DCB9q2zAK8hjAlIaUUpRoFUsyaBZHQGIDxJd0JWx1fZQoaAZoCWgPQwjsTQzJybwkwJSGlFKUaBVLMmgWR0BiekZm7J4jdX2UKGgGaAloD0MIQWZn0TtFGcCUhpRSlGgVSzJoFkdAYtJZJTVDr3V9lChoBmgJaA9DCPfkYaHW9BTAlIaUUpRoFUsyaBZHQGMpbo0Q9Rt1fZQoaAZoCWgPQwj0TZoGRSMswJSGlFKUaBVLMmgWR0Bje1fTkQwsdX2UKGgGaAloD0MIwr8IGjPxIcCUhpRSlGgVSzJoFkdAY8uNtqHoHXV9lChoBmgJaA9DCCibcoV3US7AlIaUUpRoFUsyaBZHQGQjAw482aV1fZQoaAZoCWgPQwg6zm3CvTolwJSGlFKUaBVLMmgWR0BkePVsk6cRdX2UKGgGaAloD0MIy59vC5baIsCUhpRSlGgVSzJoFkdAZNBDQZ4wAXV9lChoBmgJaA9DCNh+MsaHkSLAlIaUUpRoFUsyaBZHQGUlIj4YaYN1fZQoaAZoCWgPQwgcCMkCJjgmwJSGlFKUaBVLMmgWR0BlgvW4EwFldX2UKGgGaAloD0MIEjKQZ5e/JsCUhpRSlGgVSzJoFkdAZddDF6zE8HV9lChoBmgJaA9DCBgHl445jxvAlIaUUpRoFUsyaBZHQGY2LXDm8ul1fZQoaAZoCWgPQwi/ZOPBFrslwJSGlFKUaBVLMmgWR0BmkAJ1JUYLdX2UKGgGaAloD0MIxQH0+/7tEcCUhpRSlGgVSzJoFkdAZu/w/gR9PXV9lChoBmgJaA9DCFwbKsb5mx7AlIaUUpRoFUsyaBZHQGdGLpRoAXF1ZS4="
76
+ },
77
+ "ep_success_buffer": {
78
+ ":type:": "<class 'collections.deque'>",
79
+ ":serialized:": "gAWVrwgAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="
80
+ },
81
+ "_n_updates": 3401,
82
+ "buffer_size": 1000000,
83
+ "batch_size": 256,
84
+ "learning_starts": 100,
85
+ "tau": 0.005,
86
+ "gamma": 0.99,
87
+ "gradient_steps": 1,
88
+ "optimize_memory_usage": false,
89
+ "replay_buffer_class": {
90
+ ":type:": "<class 'abc.ABCMeta'>",
91
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
92
+ "__module__": "stable_baselines3.common.buffers",
93
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
94
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7f4e2f29c4c0>",
95
+ "add": "<function DictReplayBuffer.add at 0x7f4e2f29c550>",
96
+ "sample": "<function DictReplayBuffer.sample at 0x7f4e2f29c5e0>",
97
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f4e2f29c670>",
98
+ "__abstractmethods__": "frozenset()",
99
+ "_abc_impl": "<_abc_data object at 0x7f4e2f314e10>"
100
+ },
101
+ "replay_buffer_kwargs": {},
102
+ "train_freq": {
103
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
104
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
105
+ },
106
+ "use_sde_at_warmup": false,
107
+ "target_entropy": {
108
+ ":type:": "<class 'numpy.float32'>",
109
+ ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="
110
+ },
111
+ "ent_coef": "auto",
112
+ "target_update_interval": 1,
113
+ "top_quantiles_to_drop_per_net": 2,
114
+ "batch_norm_stats": [],
115
+ "batch_norm_stats_target": []
116
+ }
tqc-PandaReachDense-v2/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb3c3ef9b6137ed5d1e1939db5de535fb502ad808f011ba1e6537a93e61c6e0d
3
+ size 1507
tqc-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87a2076753c07e8dd9967294352c45c1948f46b5c875226beb296660da7b5493
3
+ size 1514757
tqc-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f6bef1d4d01526ffa7be07ff541811861de15cdbe95c7d04179713923a399c
3
+ size 747
tqc-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0