|
import json |
|
import math |
|
import time |
|
from PIL import Image |
|
import torch |
|
from torchvision.transforms import transforms |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model = torch.load("path/to/your/model.pth") |
|
model.to(device) |
|
model.eval() |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
with open("tags_8034.json", "r") as f: |
|
tags = json.load(f) |
|
tags.append("placeholder0") |
|
tags = sorted(tags) |
|
|
|
image_path = "path/to/your/image.jpg" |
|
start = time.time() |
|
img = Image.open(image_path).convert('RGB') |
|
aspect_ratio = img.width / img.height |
|
new_height = math.sqrt(512 ** 2 / aspect_ratio) |
|
new_width = aspect_ratio * new_height |
|
img.thumbnail((int(new_width), int(new_height)), Image.LANCZOS) |
|
tensor = transform(img).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
out = model(tensor) |
|
probabilities = torch.nn.functional.sigmoid(out[0]) |
|
|
|
indices = torch.where(probabilities > 0.3)[0] |
|
values = probabilities[indices] |
|
|
|
for i in range(indices.size(0)): |
|
print(tags[indices[i]], values[i].item()) |
|
|
|
end = time.time() |
|
print(f'Executed in {end - start} seconds') |
|
print("\n\n", end="") |
|
|