File size: 1,930 Bytes
2b35390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
model-index:
- name: CS505-Classifier-T4_predictLabel_a1_v7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CS505-Classifier-T4_predictLabel_a1_v7

This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0355

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 70

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.98  | 48   | 0.6966          |
| No log        | 1.96  | 96   | 0.3265          |
| No log        | 2.94  | 144  | 0.2746          |
| No log        | 3.92  | 192  | 0.1899          |
| No log        | 4.9   | 240  | 0.1671          |
| No log        | 5.88  | 288  | 0.1193          |
| No log        | 6.86  | 336  | 0.1259          |
| No log        | 7.84  | 384  | 0.0737          |
| No log        | 8.82  | 432  | 0.0461          |
| No log        | 9.8   | 480  | 0.0490          |
| 0.3023        | 10.78 | 528  | 0.0293          |
| 0.3023        | 11.76 | 576  | 0.0324          |
| 0.3023        | 12.73 | 624  | 0.0355          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2