--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-train-aug_replace_w2v results: [] --- # PhoBERT-train-aug_replace_w2v This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1784 - Accuracy: 0.69 - F1: 0.6954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.91 | 1.0 | 84 | 0.7509 | 0.69 | 0.6518 | | 0.6192 | 2.0 | 168 | 0.6326 | 0.76 | 0.7635 | | 0.4457 | 3.0 | 252 | 0.6374 | 0.74 | 0.7464 | | 0.3088 | 4.0 | 336 | 0.7942 | 0.71 | 0.7157 | | 0.2422 | 5.0 | 420 | 0.8893 | 0.71 | 0.7165 | | 0.1631 | 6.0 | 504 | 1.0951 | 0.7 | 0.7036 | | 0.1408 | 7.0 | 588 | 1.1012 | 0.69 | 0.6982 | | 0.1057 | 8.0 | 672 | 1.1784 | 0.69 | 0.6954 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3