Tiger14n's picture
Upload folder using huggingface_hub
7ef7abb verified
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from .positional_embedding import offset_sequence_embedding
from .positional_embedding import position_sequence_embedding
from .positional_embedding import timestep_embedding
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t):
t_freq = timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(
num_classes + use_cfg_embedding,
hidden_size,
)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = (
torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
)
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Core DiT Model #
#################################################################################
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=None,
bias=True,
drop=0.0,
use_conv=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = (bias, bias)
drop_probs = (drop, drop)
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = (
norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
)
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.norm(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = nn.MultiheadAttention(
hidden_size,
num_heads=num_heads,
batch_first=True,
**block_kwargs,
)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
# noinspection PyTypeChecker
self.mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=approx_gelu,
drop=0,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True),
)
def forward(self, x, c, attn_mask=None):
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = self.adaLN_modulation(c).chunk(6, dim=1)
modulated = modulate(self.norm1(x), shift_msa, scale_msa)
x = (
x
+ gate_msa.unsqueeze(1)
* self.attn(
modulated,
modulated,
modulated,
need_weights=False,
attn_mask=attn_mask,
)[0]
)
x = x + gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp),
)
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True),
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class FirstLayer(nn.Module):
"""
Embeds scalar positions into vector representation and concatenates context.
"""
def __init__(
self,
hidden_size,
context_size,
in_channels,
frequency_embedding_size=128,
):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(
in_channels * frequency_embedding_size
+ frequency_embedding_size
+ context_size,
hidden_size,
bias=True,
),
)
self.frequency_embedding_size = frequency_embedding_size
self.playfield_size = nn.Parameter(
torch.tensor((512, 384), dtype=torch.float32),
requires_grad=False,
)
def forward(self, x, o, c):
x_freq = position_sequence_embedding(
x * self.playfield_size,
self.frequency_embedding_size,
)
o_freq = offset_sequence_embedding(o / 10, self.frequency_embedding_size)
xoc = torch.concatenate((x_freq, o_freq, c), -1)
xoc_emb = self.mlp(xoc)
return xoc_emb
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
in_channels=2,
context_size=142,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.context_size = context_size
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.num_heads = num_heads
self.xoc_embedder = FirstLayer(hidden_size, context_size, in_channels)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
self.blocks = nn.ModuleList(
[
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)
for _ in range(depth)
],
)
self.final_layer = FinalLayer(hidden_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize position embedding MLP:
nn.init.normal_(self.xoc_embedder.mlp[0].weight, std=0.02)
# Initialize label embedding table:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, o, c, y, attn_mask=None):
"""
Forward pass of DiT.
x: (N, C, T) tensor of sequence inputs
t: (N) tensor of diffusion timesteps
o: (N, T) tensor of sequence offsets in milliseconds
c: (N, E, T) tensor of sequence context
y: (N) tensor of class labels
"""
x = torch.swapaxes(x, 1, 2) # (N, T, C)
c = torch.swapaxes(c, 1, 2) # (N, T, E)
x = self.xoc_embedder(x, o, c) # (N, T, D), where T = seq_len
t = self.t_embedder(t) # (N, D)
y = self.y_embedder(y, self.training) # (N, D)
b = t + y # (N, D)
for block in self.blocks:
x = block(x, b, attn_mask) # (N, T, D)
x = self.final_layer(x, b) # (N, T, out_channels)
x = torch.swapaxes(x, 1, 2) # (N, out_channels, T)
return x
def forward_with_cfg(self, x, t, o, c, y, cfg_scale, attn_mask=None):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, o, c, y, attn_mask)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
# eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate(
[np.zeros([extra_tokens, embed_dim]), pos_embed],
axis=0,
)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# DiT Configs #
#################################################################################
def DiT_XL(**kwargs: dict) -> DiT:
return DiT(depth=28, hidden_size=1152, num_heads=16, **kwargs)
def DiT_L(**kwargs: dict) -> DiT:
return DiT(depth=24, hidden_size=1024, num_heads=16, **kwargs)
def DiT_B(**kwargs: dict) -> DiT:
return DiT(depth=12, hidden_size=768, num_heads=12, **kwargs)
def DiT_S(**kwargs: dict) -> DiT:
return DiT(depth=12, hidden_size=384, num_heads=6, **kwargs)
DiT_models = {
"DiT-XL": DiT_XL,
"DiT-L": DiT_L,
"DiT-B": DiT_B,
"DiT-S": DiT_S,
}