File size: 2,099 Bytes
1d1afac
 
f6764e5
 
 
 
 
 
 
 
1d1afac
f6764e5
21ee02c
f6764e5
 
 
0a65ecb
f6764e5
 
 
 
 
 
 
 
 
 
 
 
0a65ecb
 
f6764e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6659471
 
f6764e5
deeb947
f6764e5
deeb947
f6764e5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
language:
- fr
- it
- de
- es
- en
- zh
inference: false
---
# Model Card for Mobius-12B-base-m1 
The Mobius-12B-base-m1 Large Language Model (LLM) is a pretrained model based on RWKV v5 arch. We use 0.01B tokens to post train this model for alignment the benchmark.


## Warning
This repo contains weights that are not compatible with Hugging Face [transformers](https://github.com/huggingface/transformers) library yet. But you can try this[PR](https://github.com/huggingface/transformers/pull/26963) as well. 
 [RWKV runner]() or [AI00 server]() also work.

## Instruction|Chat format

This format must be strictly respected, otherwise the model will generate sub-optimal outputs.

The template used to build a prompt for the Instruct model is defined as follows:
```
User: {Instruction|prompt}\n\nAssistant:
```

## Run the model
Need to install this [PR](https://github.com/huggingface/transformers/pull/26963)
pip install -e git://github.com/BBuf/transformers.git 

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("TimeMobius/Mobius-12B-base-m1", torch_dtype=torch.float16).to(0)
tokenizer = AutoTokenizer.from_pretrained("TimeMobius/Mobius-12B-base-m1", trust_remote_code=True)

text = "x"
prompt = f'Question: {text.strip()}\n\nAnswer:'

inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=40)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
```

## Limitations

The Mobius base m1 is the base model can be easily fine-tuned to achieve compelling performance. 

### Benchmark

| Mobius-12B-base-m1 |          | 
|--------------------|----------|
| lambda ppl                | 3.41   |
| lambda                |  0.72  |
| piqa               | 0.78   |
| hellaswag 10 shots         | 0.72        |
| winogrande         | 0.68        |
| arc_challenge 25shots     | 0.47       | 
| arc_easy           | 0.73       |
| openbookqa         | 0.40       |
| sciq               | 0.93       |


# @TimeMobius