TinyPixel commited on
Commit
07f4166
·
1 Parent(s): b15b7da

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-1_8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-1_8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_attn",
23
+ "c_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_rslora": false
27
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b142003602f7f01ee05e6855c405f84646dff1a8e49668d88a6614f742d4e93
3
+ size 121915776
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:161d0cbe64e1872859d6cc7b6a021b960a4f2c3941d5b2dddbf9458ce07c20a0
3
+ size 243883386
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5d121795e588100bd33bc9edf9263368604c213bf6fb6c711266a0359aa1d1
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20374b9ce355f11e9edb49681e41eebe542315634b5fda6eec73f8247a8005f1
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "pad_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ }
9
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "Qwen/Qwen-1_8B--tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 8192,
11
+ "pad_token": "<|endoftext|>",
12
+ "tokenizer_class": "QWenTokenizer"
13
+ }
trainer_state.json ADDED
@@ -0,0 +1,921 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.983219390926041,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 4.444444444444444e-06,
14
+ "loss": 2.3725,
15
+ "step": 2
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "learning_rate": 8.888888888888888e-06,
20
+ "loss": 2.2594,
21
+ "step": 4
22
+ },
23
+ {
24
+ "epoch": 0.06,
25
+ "learning_rate": 1.3333333333333333e-05,
26
+ "loss": 2.2795,
27
+ "step": 6
28
+ },
29
+ {
30
+ "epoch": 0.08,
31
+ "learning_rate": 1.7777777777777777e-05,
32
+ "loss": 2.2708,
33
+ "step": 8
34
+ },
35
+ {
36
+ "epoch": 0.1,
37
+ "learning_rate": 1.9999417253661235e-05,
38
+ "loss": 2.4065,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.12,
43
+ "learning_rate": 1.9994755690455154e-05,
44
+ "loss": 2.3711,
45
+ "step": 12
46
+ },
47
+ {
48
+ "epoch": 0.14,
49
+ "learning_rate": 1.998543473718677e-05,
50
+ "loss": 2.3178,
51
+ "step": 14
52
+ },
53
+ {
54
+ "epoch": 0.16,
55
+ "learning_rate": 1.9971458739130598e-05,
56
+ "loss": 2.4023,
57
+ "step": 16
58
+ },
59
+ {
60
+ "epoch": 0.18,
61
+ "learning_rate": 1.995283421166614e-05,
62
+ "loss": 2.1702,
63
+ "step": 18
64
+ },
65
+ {
66
+ "epoch": 0.2,
67
+ "learning_rate": 1.9929569837240567e-05,
68
+ "loss": 2.0057,
69
+ "step": 20
70
+ },
71
+ {
72
+ "epoch": 0.22,
73
+ "learning_rate": 1.990167646132107e-05,
74
+ "loss": 2.2092,
75
+ "step": 22
76
+ },
77
+ {
78
+ "epoch": 0.24,
79
+ "learning_rate": 1.9869167087338908e-05,
80
+ "loss": 2.0733,
81
+ "step": 24
82
+ },
83
+ {
84
+ "epoch": 0.26,
85
+ "learning_rate": 1.983205687062742e-05,
86
+ "loss": 2.2622,
87
+ "step": 26
88
+ },
89
+ {
90
+ "epoch": 0.28,
91
+ "learning_rate": 1.9790363111356838e-05,
92
+ "loss": 2.3358,
93
+ "step": 28
94
+ },
95
+ {
96
+ "epoch": 0.3,
97
+ "learning_rate": 1.9744105246469264e-05,
98
+ "loss": 2.2823,
99
+ "step": 30
100
+ },
101
+ {
102
+ "epoch": 0.32,
103
+ "learning_rate": 1.9693304840617456e-05,
104
+ "loss": 2.3289,
105
+ "step": 32
106
+ },
107
+ {
108
+ "epoch": 0.34,
109
+ "learning_rate": 1.963798557611178e-05,
110
+ "loss": 2.235,
111
+ "step": 34
112
+ },
113
+ {
114
+ "epoch": 0.36,
115
+ "learning_rate": 1.957817324187987e-05,
116
+ "loss": 2.1541,
117
+ "step": 36
118
+ },
119
+ {
120
+ "epoch": 0.38,
121
+ "learning_rate": 1.9513895721444286e-05,
122
+ "loss": 2.2524,
123
+ "step": 38
124
+ },
125
+ {
126
+ "epoch": 0.4,
127
+ "learning_rate": 1.9445182979923657e-05,
128
+ "loss": 2.3427,
129
+ "step": 40
130
+ },
131
+ {
132
+ "epoch": 0.42,
133
+ "learning_rate": 1.937206705006344e-05,
134
+ "loss": 2.136,
135
+ "step": 42
136
+ },
137
+ {
138
+ "epoch": 0.44,
139
+ "learning_rate": 1.9294582017302797e-05,
140
+ "loss": 2.152,
141
+ "step": 44
142
+ },
143
+ {
144
+ "epoch": 0.46,
145
+ "learning_rate": 1.921276400388451e-05,
146
+ "loss": 2.1322,
147
+ "step": 46
148
+ },
149
+ {
150
+ "epoch": 0.48,
151
+ "learning_rate": 1.9126651152015404e-05,
152
+ "loss": 2.2564,
153
+ "step": 48
154
+ },
155
+ {
156
+ "epoch": 0.5,
157
+ "learning_rate": 1.9036283606085057e-05,
158
+ "loss": 2.2246,
159
+ "step": 50
160
+ },
161
+ {
162
+ "epoch": 0.52,
163
+ "learning_rate": 1.8941703493951163e-05,
164
+ "loss": 2.1903,
165
+ "step": 52
166
+ },
167
+ {
168
+ "epoch": 0.54,
169
+ "learning_rate": 1.8842954907300236e-05,
170
+ "loss": 2.1431,
171
+ "step": 54
172
+ },
173
+ {
174
+ "epoch": 0.56,
175
+ "learning_rate": 1.874008388109276e-05,
176
+ "loss": 2.2975,
177
+ "step": 56
178
+ },
179
+ {
180
+ "epoch": 0.58,
181
+ "learning_rate": 1.863313837210247e-05,
182
+ "loss": 2.1324,
183
+ "step": 58
184
+ },
185
+ {
186
+ "epoch": 0.6,
187
+ "learning_rate": 1.8522168236559693e-05,
188
+ "loss": 2.1113,
189
+ "step": 60
190
+ },
191
+ {
192
+ "epoch": 0.62,
193
+ "learning_rate": 1.840722520690921e-05,
194
+ "loss": 2.3031,
195
+ "step": 62
196
+ },
197
+ {
198
+ "epoch": 0.64,
199
+ "learning_rate": 1.8288362867693414e-05,
200
+ "loss": 2.135,
201
+ "step": 64
202
+ },
203
+ {
204
+ "epoch": 0.66,
205
+ "learning_rate": 1.816563663057211e-05,
206
+ "loss": 2.0996,
207
+ "step": 66
208
+ },
209
+ {
210
+ "epoch": 0.68,
211
+ "learning_rate": 1.8039103708490503e-05,
212
+ "loss": 2.2049,
213
+ "step": 68
214
+ },
215
+ {
216
+ "epoch": 0.7,
217
+ "learning_rate": 1.790882308900746e-05,
218
+ "loss": 2.1811,
219
+ "step": 70
220
+ },
221
+ {
222
+ "epoch": 0.72,
223
+ "learning_rate": 1.7774855506796497e-05,
224
+ "loss": 2.1447,
225
+ "step": 72
226
+ },
227
+ {
228
+ "epoch": 0.74,
229
+ "learning_rate": 1.7637263415332272e-05,
230
+ "loss": 2.1883,
231
+ "step": 74
232
+ },
233
+ {
234
+ "epoch": 0.76,
235
+ "learning_rate": 1.749611095777581e-05,
236
+ "loss": 2.143,
237
+ "step": 76
238
+ },
239
+ {
240
+ "epoch": 0.78,
241
+ "learning_rate": 1.7351463937072008e-05,
242
+ "loss": 2.3966,
243
+ "step": 78
244
+ },
245
+ {
246
+ "epoch": 0.8,
247
+ "learning_rate": 1.7203389785273402e-05,
248
+ "loss": 2.1011,
249
+ "step": 80
250
+ },
251
+ {
252
+ "epoch": 0.82,
253
+ "learning_rate": 1.705195753210446e-05,
254
+ "loss": 2.1543,
255
+ "step": 82
256
+ },
257
+ {
258
+ "epoch": 0.84,
259
+ "learning_rate": 1.6897237772781046e-05,
260
+ "loss": 2.3031,
261
+ "step": 84
262
+ },
263
+ {
264
+ "epoch": 0.86,
265
+ "learning_rate": 1.673930263510011e-05,
266
+ "loss": 2.1147,
267
+ "step": 86
268
+ },
269
+ {
270
+ "epoch": 0.88,
271
+ "learning_rate": 1.6578225745814907e-05,
272
+ "loss": 2.2728,
273
+ "step": 88
274
+ },
275
+ {
276
+ "epoch": 0.89,
277
+ "learning_rate": 1.6414082196311402e-05,
278
+ "loss": 2.1936,
279
+ "step": 90
280
+ },
281
+ {
282
+ "epoch": 0.91,
283
+ "learning_rate": 1.6246948507601915e-05,
284
+ "loss": 1.9656,
285
+ "step": 92
286
+ },
287
+ {
288
+ "epoch": 0.93,
289
+ "learning_rate": 1.607690259465229e-05,
290
+ "loss": 2.1498,
291
+ "step": 94
292
+ },
293
+ {
294
+ "epoch": 0.95,
295
+ "learning_rate": 1.5904023730059227e-05,
296
+ "loss": 2.153,
297
+ "step": 96
298
+ },
299
+ {
300
+ "epoch": 0.97,
301
+ "learning_rate": 1.57283925070947e-05,
302
+ "loss": 2.2002,
303
+ "step": 98
304
+ },
305
+ {
306
+ "epoch": 0.99,
307
+ "learning_rate": 1.55500908021347e-05,
308
+ "loss": 1.9758,
309
+ "step": 100
310
+ },
311
+ {
312
+ "epoch": 1.01,
313
+ "learning_rate": 1.536920173648984e-05,
314
+ "loss": 2.1241,
315
+ "step": 102
316
+ },
317
+ {
318
+ "epoch": 1.03,
319
+ "learning_rate": 1.5185809637655548e-05,
320
+ "loss": 2.131,
321
+ "step": 104
322
+ },
323
+ {
324
+ "epoch": 1.05,
325
+ "learning_rate": 1.5000000000000002e-05,
326
+ "loss": 2.2022,
327
+ "step": 106
328
+ },
329
+ {
330
+ "epoch": 1.07,
331
+ "learning_rate": 1.4811859444908053e-05,
332
+ "loss": 2.2409,
333
+ "step": 108
334
+ },
335
+ {
336
+ "epoch": 1.09,
337
+ "learning_rate": 1.4621475680399771e-05,
338
+ "loss": 2.2267,
339
+ "step": 110
340
+ },
341
+ {
342
+ "epoch": 1.11,
343
+ "learning_rate": 1.4428937460242417e-05,
344
+ "loss": 2.1693,
345
+ "step": 112
346
+ },
347
+ {
348
+ "epoch": 1.13,
349
+ "learning_rate": 1.4234334542574906e-05,
350
+ "loss": 2.0854,
351
+ "step": 114
352
+ },
353
+ {
354
+ "epoch": 1.15,
355
+ "learning_rate": 1.4037757648064019e-05,
356
+ "loss": 2.1075,
357
+ "step": 116
358
+ },
359
+ {
360
+ "epoch": 1.17,
361
+ "learning_rate": 1.3839298417611964e-05,
362
+ "loss": 2.0815,
363
+ "step": 118
364
+ },
365
+ {
366
+ "epoch": 1.19,
367
+ "learning_rate": 1.3639049369634878e-05,
368
+ "loss": 2.0867,
369
+ "step": 120
370
+ },
371
+ {
372
+ "epoch": 1.21,
373
+ "learning_rate": 1.3437103856932266e-05,
374
+ "loss": 2.1021,
375
+ "step": 122
376
+ },
377
+ {
378
+ "epoch": 1.23,
379
+ "learning_rate": 1.3233556023167487e-05,
380
+ "loss": 2.0964,
381
+ "step": 124
382
+ },
383
+ {
384
+ "epoch": 1.25,
385
+ "learning_rate": 1.3028500758979507e-05,
386
+ "loss": 2.1726,
387
+ "step": 126
388
+ },
389
+ {
390
+ "epoch": 1.27,
391
+ "learning_rate": 1.2822033657746478e-05,
392
+ "loss": 2.1817,
393
+ "step": 128
394
+ },
395
+ {
396
+ "epoch": 1.29,
397
+ "learning_rate": 1.2614250971021658e-05,
398
+ "loss": 2.092,
399
+ "step": 130
400
+ },
401
+ {
402
+ "epoch": 1.31,
403
+ "learning_rate": 1.2405249563662539e-05,
404
+ "loss": 2.1974,
405
+ "step": 132
406
+ },
407
+ {
408
+ "epoch": 1.33,
409
+ "learning_rate": 1.2195126868674052e-05,
410
+ "loss": 2.2407,
411
+ "step": 134
412
+ },
413
+ {
414
+ "epoch": 1.35,
415
+ "learning_rate": 1.1983980841786899e-05,
416
+ "loss": 2.0893,
417
+ "step": 136
418
+ },
419
+ {
420
+ "epoch": 1.37,
421
+ "learning_rate": 1.177190991579223e-05,
422
+ "loss": 2.1196,
423
+ "step": 138
424
+ },
425
+ {
426
+ "epoch": 1.39,
427
+ "learning_rate": 1.1559012954653865e-05,
428
+ "loss": 2.3453,
429
+ "step": 140
430
+ },
431
+ {
432
+ "epoch": 1.41,
433
+ "learning_rate": 1.1345389207419588e-05,
434
+ "loss": 2.1678,
435
+ "step": 142
436
+ },
437
+ {
438
+ "epoch": 1.43,
439
+ "learning_rate": 1.1131138261952845e-05,
440
+ "loss": 2.1813,
441
+ "step": 144
442
+ },
443
+ {
444
+ "epoch": 1.45,
445
+ "learning_rate": 1.0916359998506549e-05,
446
+ "loss": 1.9234,
447
+ "step": 146
448
+ },
449
+ {
450
+ "epoch": 1.47,
451
+ "learning_rate": 1.070115454316054e-05,
452
+ "loss": 2.0101,
453
+ "step": 148
454
+ },
455
+ {
456
+ "epoch": 1.49,
457
+ "learning_rate": 1.0485622221144485e-05,
458
+ "loss": 2.1219,
459
+ "step": 150
460
+ },
461
+ {
462
+ "epoch": 1.51,
463
+ "learning_rate": 1.0269863510067872e-05,
464
+ "loss": 2.005,
465
+ "step": 152
466
+ },
467
+ {
468
+ "epoch": 1.53,
469
+ "learning_rate": 1.0053978993079046e-05,
470
+ "loss": 2.2665,
471
+ "step": 154
472
+ },
473
+ {
474
+ "epoch": 1.55,
475
+ "learning_rate": 9.838069311974986e-06,
476
+ "loss": 2.1162,
477
+ "step": 156
478
+ },
479
+ {
480
+ "epoch": 1.57,
481
+ "learning_rate": 9.622235120283769e-06,
482
+ "loss": 2.1579,
483
+ "step": 158
484
+ },
485
+ {
486
+ "epoch": 1.59,
487
+ "learning_rate": 9.406577036341548e-06,
488
+ "loss": 2.2042,
489
+ "step": 160
490
+ },
491
+ {
492
+ "epoch": 1.61,
493
+ "learning_rate": 9.19119559638596e-06,
494
+ "loss": 2.2177,
495
+ "step": 162
496
+ },
497
+ {
498
+ "epoch": 1.63,
499
+ "learning_rate": 8.976191207687775e-06,
500
+ "loss": 2.0318,
501
+ "step": 164
502
+ },
503
+ {
504
+ "epoch": 1.65,
505
+ "learning_rate": 8.7616641017427e-06,
506
+ "loss": 2.1748,
507
+ "step": 166
508
+ },
509
+ {
510
+ "epoch": 1.67,
511
+ "learning_rate": 8.5477142875451e-06,
512
+ "loss": 1.9726,
513
+ "step": 168
514
+ },
515
+ {
516
+ "epoch": 1.69,
517
+ "learning_rate": 8.334441504965456e-06,
518
+ "loss": 1.924,
519
+ "step": 170
520
+ },
521
+ {
522
+ "epoch": 1.71,
523
+ "learning_rate": 8.1219451782533e-06,
524
+ "loss": 2.0598,
525
+ "step": 172
526
+ },
527
+ {
528
+ "epoch": 1.73,
529
+ "learning_rate": 7.91032436968725e-06,
530
+ "loss": 2.1213,
531
+ "step": 174
532
+ },
533
+ {
534
+ "epoch": 1.75,
535
+ "learning_rate": 7.699677733393827e-06,
536
+ "loss": 2.2904,
537
+ "step": 176
538
+ },
539
+ {
540
+ "epoch": 1.77,
541
+ "learning_rate": 7.490103469356513e-06,
542
+ "loss": 2.2139,
543
+ "step": 178
544
+ },
545
+ {
546
+ "epoch": 1.79,
547
+ "learning_rate": 7.2816992776365714e-06,
548
+ "loss": 2.1279,
549
+ "step": 180
550
+ },
551
+ {
552
+ "epoch": 1.81,
553
+ "learning_rate": 7.0745623128268605e-06,
554
+ "loss": 2.2162,
555
+ "step": 182
556
+ },
557
+ {
558
+ "epoch": 1.83,
559
+ "learning_rate": 6.868789138759977e-06,
560
+ "loss": 2.1864,
561
+ "step": 184
562
+ },
563
+ {
564
+ "epoch": 1.85,
565
+ "learning_rate": 6.664475683491797e-06,
566
+ "loss": 2.1537,
567
+ "step": 186
568
+ },
569
+ {
570
+ "epoch": 1.87,
571
+ "learning_rate": 6.461717194581394e-06,
572
+ "loss": 2.171,
573
+ "step": 188
574
+ },
575
+ {
576
+ "epoch": 1.89,
577
+ "learning_rate": 6.260608194688207e-06,
578
+ "loss": 2.1803,
579
+ "step": 190
580
+ },
581
+ {
582
+ "epoch": 1.91,
583
+ "learning_rate": 6.061242437507131e-06,
584
+ "loss": 2.0529,
585
+ "step": 192
586
+ },
587
+ {
588
+ "epoch": 1.93,
589
+ "learning_rate": 5.863712864062089e-06,
590
+ "loss": 2.0671,
591
+ "step": 194
592
+ },
593
+ {
594
+ "epoch": 1.95,
595
+ "learning_rate": 5.6681115593784705e-06,
596
+ "loss": 2.15,
597
+ "step": 196
598
+ },
599
+ {
600
+ "epoch": 1.97,
601
+ "learning_rate": 5.4745297095546125e-06,
602
+ "loss": 2.168,
603
+ "step": 198
604
+ },
605
+ {
606
+ "epoch": 1.99,
607
+ "learning_rate": 5.2830575592523415e-06,
608
+ "loss": 1.8829,
609
+ "step": 200
610
+ },
611
+ {
612
+ "epoch": 2.01,
613
+ "learning_rate": 5.093784369626397e-06,
614
+ "loss": 1.8625,
615
+ "step": 202
616
+ },
617
+ {
618
+ "epoch": 2.03,
619
+ "learning_rate": 4.9067983767123736e-06,
620
+ "loss": 2.2729,
621
+ "step": 204
622
+ },
623
+ {
624
+ "epoch": 2.05,
625
+ "learning_rate": 4.722186750292511e-06,
626
+ "loss": 2.1912,
627
+ "step": 206
628
+ },
629
+ {
630
+ "epoch": 2.07,
631
+ "learning_rate": 4.54003555325862e-06,
632
+ "loss": 2.115,
633
+ "step": 208
634
+ },
635
+ {
636
+ "epoch": 2.09,
637
+ "learning_rate": 4.360429701490935e-06,
638
+ "loss": 2.1249,
639
+ "step": 210
640
+ },
641
+ {
642
+ "epoch": 2.11,
643
+ "learning_rate": 4.183452924271776e-06,
644
+ "loss": 2.1941,
645
+ "step": 212
646
+ },
647
+ {
648
+ "epoch": 2.13,
649
+ "learning_rate": 4.009187725252309e-06,
650
+ "loss": 2.1044,
651
+ "step": 214
652
+ },
653
+ {
654
+ "epoch": 2.15,
655
+ "learning_rate": 3.837715343990727e-06,
656
+ "loss": 2.1149,
657
+ "step": 216
658
+ },
659
+ {
660
+ "epoch": 2.17,
661
+ "learning_rate": 3.669115718079702e-06,
662
+ "loss": 1.9624,
663
+ "step": 218
664
+ },
665
+ {
666
+ "epoch": 2.19,
667
+ "learning_rate": 3.5034674458807893e-06,
668
+ "loss": 2.1396,
669
+ "step": 220
670
+ },
671
+ {
672
+ "epoch": 2.21,
673
+ "learning_rate": 3.3408477498831917e-06,
674
+ "loss": 1.9964,
675
+ "step": 222
676
+ },
677
+ {
678
+ "epoch": 2.23,
679
+ "learning_rate": 3.1813324407038826e-06,
680
+ "loss": 1.9679,
681
+ "step": 224
682
+ },
683
+ {
684
+ "epoch": 2.25,
685
+ "learning_rate": 3.024995881745972e-06,
686
+ "loss": 2.0472,
687
+ "step": 226
688
+ },
689
+ {
690
+ "epoch": 2.27,
691
+ "learning_rate": 2.8719109545317102e-06,
692
+ "loss": 2.1399,
693
+ "step": 228
694
+ },
695
+ {
696
+ "epoch": 2.29,
697
+ "learning_rate": 2.722149024726307e-06,
698
+ "loss": 2.1447,
699
+ "step": 230
700
+ },
701
+ {
702
+ "epoch": 2.31,
703
+ "learning_rate": 2.5757799088684654e-06,
704
+ "loss": 2.176,
705
+ "step": 232
706
+ },
707
+ {
708
+ "epoch": 2.33,
709
+ "learning_rate": 2.432871841823047e-06,
710
+ "loss": 2.2318,
711
+ "step": 234
712
+ },
713
+ {
714
+ "epoch": 2.35,
715
+ "learning_rate": 2.293491444971109e-06,
716
+ "loss": 2.1988,
717
+ "step": 236
718
+ },
719
+ {
720
+ "epoch": 2.37,
721
+ "learning_rate": 2.157703695152109e-06,
722
+ "loss": 2.1636,
723
+ "step": 238
724
+ },
725
+ {
726
+ "epoch": 2.39,
727
+ "learning_rate": 2.025571894372794e-06,
728
+ "loss": 2.1685,
729
+ "step": 240
730
+ },
731
+ {
732
+ "epoch": 2.41,
733
+ "learning_rate": 1.897157640296825e-06,
734
+ "loss": 2.0524,
735
+ "step": 242
736
+ },
737
+ {
738
+ "epoch": 2.43,
739
+ "learning_rate": 1.7725207975289883e-06,
740
+ "loss": 2.1376,
741
+ "step": 244
742
+ },
743
+ {
744
+ "epoch": 2.45,
745
+ "learning_rate": 1.6517194697072903e-06,
746
+ "loss": 1.9918,
747
+ "step": 246
748
+ },
749
+ {
750
+ "epoch": 2.47,
751
+ "learning_rate": 1.534809972415998e-06,
752
+ "loss": 2.0566,
753
+ "step": 248
754
+ },
755
+ {
756
+ "epoch": 2.49,
757
+ "learning_rate": 1.4218468069322576e-06,
758
+ "loss": 2.1923,
759
+ "step": 250
760
+ },
761
+ {
762
+ "epoch": 2.51,
763
+ "learning_rate": 1.3128826348184886e-06,
764
+ "loss": 1.906,
765
+ "step": 252
766
+ },
767
+ {
768
+ "epoch": 2.53,
769
+ "learning_rate": 1.207968253372438e-06,
770
+ "loss": 2.1381,
771
+ "step": 254
772
+ },
773
+ {
774
+ "epoch": 2.55,
775
+ "learning_rate": 1.1071525719463094e-06,
776
+ "loss": 2.2416,
777
+ "step": 256
778
+ },
779
+ {
780
+ "epoch": 2.57,
781
+ "learning_rate": 1.010482589146048e-06,
782
+ "loss": 2.1186,
783
+ "step": 258
784
+ },
785
+ {
786
+ "epoch": 2.59,
787
+ "learning_rate": 9.180033709213454e-07,
788
+ "loss": 2.1209,
789
+ "step": 260
790
+ },
791
+ {
792
+ "epoch": 2.61,
793
+ "learning_rate": 8.297580295566576e-07,
794
+ "loss": 2.0745,
795
+ "step": 262
796
+ },
797
+ {
798
+ "epoch": 2.63,
799
+ "learning_rate": 7.457877035729588e-07,
800
+ "loss": 2.1211,
801
+ "step": 264
802
+ },
803
+ {
804
+ "epoch": 2.65,
805
+ "learning_rate": 6.661315385496426e-07,
806
+ "loss": 2.1062,
807
+ "step": 266
808
+ },
809
+ {
810
+ "epoch": 2.67,
811
+ "learning_rate": 5.908266688755049e-07,
812
+ "loss": 2.1468,
813
+ "step": 268
814
+ },
815
+ {
816
+ "epoch": 2.68,
817
+ "learning_rate": 5.199082004372958e-07,
818
+ "loss": 2.0994,
819
+ "step": 270
820
+ },
821
+ {
822
+ "epoch": 2.7,
823
+ "learning_rate": 4.534091942539476e-07,
824
+ "loss": 2.0678,
825
+ "step": 272
826
+ },
827
+ {
828
+ "epoch": 2.72,
829
+ "learning_rate": 3.913606510640644e-07,
830
+ "loss": 2.1135,
831
+ "step": 274
832
+ },
833
+ {
834
+ "epoch": 2.74,
835
+ "learning_rate": 3.3379149687388866e-07,
836
+ "loss": 2.2148,
837
+ "step": 276
838
+ },
839
+ {
840
+ "epoch": 2.76,
841
+ "learning_rate": 2.807285694724804e-07,
842
+ "loss": 2.173,
843
+ "step": 278
844
+ },
845
+ {
846
+ "epoch": 2.78,
847
+ "learning_rate": 2.3219660592038285e-07,
848
+ "loss": 2.0792,
849
+ "step": 280
850
+ },
851
+ {
852
+ "epoch": 2.8,
853
+ "learning_rate": 1.8821823101760949e-07,
854
+ "loss": 2.0483,
855
+ "step": 282
856
+ },
857
+ {
858
+ "epoch": 2.82,
859
+ "learning_rate": 1.4881394675633543e-07,
860
+ "loss": 2.1416,
861
+ "step": 284
862
+ },
863
+ {
864
+ "epoch": 2.84,
865
+ "learning_rate": 1.1400212276321377e-07,
866
+ "loss": 2.2714,
867
+ "step": 286
868
+ },
869
+ {
870
+ "epoch": 2.86,
871
+ "learning_rate": 8.379898773574924e-08,
872
+ "loss": 2.0962,
873
+ "step": 288
874
+ },
875
+ {
876
+ "epoch": 2.88,
877
+ "learning_rate": 5.821862187675775e-08,
878
+ "loss": 2.1808,
879
+ "step": 290
880
+ },
881
+ {
882
+ "epoch": 2.9,
883
+ "learning_rate": 3.727295033040035e-08,
884
+ "loss": 2.1085,
885
+ "step": 292
886
+ },
887
+ {
888
+ "epoch": 2.92,
889
+ "learning_rate": 2.0971737622883515e-08,
890
+ "loss": 1.9238,
891
+ "step": 294
892
+ },
893
+ {
894
+ "epoch": 2.94,
895
+ "learning_rate": 9.322583110392692e-09,
896
+ "loss": 2.1334,
897
+ "step": 296
898
+ },
899
+ {
900
+ "epoch": 2.96,
901
+ "learning_rate": 2.330917436402791e-09,
902
+ "loss": 2.0183,
903
+ "step": 298
904
+ },
905
+ {
906
+ "epoch": 2.98,
907
+ "learning_rate": 0.0,
908
+ "loss": 1.9954,
909
+ "step": 300
910
+ }
911
+ ],
912
+ "logging_steps": 2,
913
+ "max_steps": 300,
914
+ "num_input_tokens_seen": 0,
915
+ "num_train_epochs": 3,
916
+ "save_steps": 500,
917
+ "total_flos": 4.176251079524352e+16,
918
+ "train_batch_size": 1,
919
+ "trial_name": null,
920
+ "trial_params": null
921
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f13c39c2bc5a32dc6a6572fb0df440e3ea9dd3b799864078a856617868734c49
3
+ size 4728