TitanML Co
commited on
Upload folder using huggingface_hub
Browse files- README.md +2809 -0
- config.json +32 -0
- configuration_jina.py +132 -0
- generation_config.json +5 -0
- model.safetensors +3 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,2809 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
- mteb
|
7 |
+
datasets:
|
8 |
+
- allenai/c4
|
9 |
+
language: en
|
10 |
+
inference: false
|
11 |
+
license: apache-2.0
|
12 |
+
model-index:
|
13 |
+
- name: jina-embedding-b-en-v2
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: Classification
|
17 |
+
dataset:
|
18 |
+
type: mteb/amazon_counterfactual
|
19 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
20 |
+
config: en
|
21 |
+
split: test
|
22 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
23 |
+
metrics:
|
24 |
+
- type: accuracy
|
25 |
+
value: 74.73134328358209
|
26 |
+
- type: ap
|
27 |
+
value: 37.765427081831035
|
28 |
+
- type: f1
|
29 |
+
value: 68.79367444339518
|
30 |
+
- task:
|
31 |
+
type: Classification
|
32 |
+
dataset:
|
33 |
+
type: mteb/amazon_polarity
|
34 |
+
name: MTEB AmazonPolarityClassification
|
35 |
+
config: default
|
36 |
+
split: test
|
37 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
38 |
+
metrics:
|
39 |
+
- type: accuracy
|
40 |
+
value: 88.544275
|
41 |
+
- type: ap
|
42 |
+
value: 84.61328675662887
|
43 |
+
- type: f1
|
44 |
+
value: 88.51879035862375
|
45 |
+
- task:
|
46 |
+
type: Classification
|
47 |
+
dataset:
|
48 |
+
type: mteb/amazon_reviews_multi
|
49 |
+
name: MTEB AmazonReviewsClassification (en)
|
50 |
+
config: en
|
51 |
+
split: test
|
52 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
53 |
+
metrics:
|
54 |
+
- type: accuracy
|
55 |
+
value: 45.263999999999996
|
56 |
+
- type: f1
|
57 |
+
value: 43.778759656699435
|
58 |
+
- task:
|
59 |
+
type: Retrieval
|
60 |
+
dataset:
|
61 |
+
type: arguana
|
62 |
+
name: MTEB ArguAna
|
63 |
+
config: default
|
64 |
+
split: test
|
65 |
+
revision: None
|
66 |
+
metrics:
|
67 |
+
- type: map_at_1
|
68 |
+
value: 21.693
|
69 |
+
- type: map_at_10
|
70 |
+
value: 35.487
|
71 |
+
- type: map_at_100
|
72 |
+
value: 36.862
|
73 |
+
- type: map_at_1000
|
74 |
+
value: 36.872
|
75 |
+
- type: map_at_3
|
76 |
+
value: 30.049999999999997
|
77 |
+
- type: map_at_5
|
78 |
+
value: 32.966
|
79 |
+
- type: mrr_at_1
|
80 |
+
value: 21.977
|
81 |
+
- type: mrr_at_10
|
82 |
+
value: 35.565999999999995
|
83 |
+
- type: mrr_at_100
|
84 |
+
value: 36.948
|
85 |
+
- type: mrr_at_1000
|
86 |
+
value: 36.958
|
87 |
+
- type: mrr_at_3
|
88 |
+
value: 30.121
|
89 |
+
- type: mrr_at_5
|
90 |
+
value: 33.051
|
91 |
+
- type: ndcg_at_1
|
92 |
+
value: 21.693
|
93 |
+
- type: ndcg_at_10
|
94 |
+
value: 44.181
|
95 |
+
- type: ndcg_at_100
|
96 |
+
value: 49.982
|
97 |
+
- type: ndcg_at_1000
|
98 |
+
value: 50.233000000000004
|
99 |
+
- type: ndcg_at_3
|
100 |
+
value: 32.830999999999996
|
101 |
+
- type: ndcg_at_5
|
102 |
+
value: 38.080000000000005
|
103 |
+
- type: precision_at_1
|
104 |
+
value: 21.693
|
105 |
+
- type: precision_at_10
|
106 |
+
value: 7.248
|
107 |
+
- type: precision_at_100
|
108 |
+
value: 0.9769999999999999
|
109 |
+
- type: precision_at_1000
|
110 |
+
value: 0.1
|
111 |
+
- type: precision_at_3
|
112 |
+
value: 13.632
|
113 |
+
- type: precision_at_5
|
114 |
+
value: 10.725
|
115 |
+
- type: recall_at_1
|
116 |
+
value: 21.693
|
117 |
+
- type: recall_at_10
|
118 |
+
value: 72.475
|
119 |
+
- type: recall_at_100
|
120 |
+
value: 97.653
|
121 |
+
- type: recall_at_1000
|
122 |
+
value: 99.57300000000001
|
123 |
+
- type: recall_at_3
|
124 |
+
value: 40.896
|
125 |
+
- type: recall_at_5
|
126 |
+
value: 53.627
|
127 |
+
- task:
|
128 |
+
type: Clustering
|
129 |
+
dataset:
|
130 |
+
type: mteb/arxiv-clustering-p2p
|
131 |
+
name: MTEB ArxivClusteringP2P
|
132 |
+
config: default
|
133 |
+
split: test
|
134 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
135 |
+
metrics:
|
136 |
+
- type: v_measure
|
137 |
+
value: 45.39242428696777
|
138 |
+
- task:
|
139 |
+
type: Clustering
|
140 |
+
dataset:
|
141 |
+
type: mteb/arxiv-clustering-s2s
|
142 |
+
name: MTEB ArxivClusteringS2S
|
143 |
+
config: default
|
144 |
+
split: test
|
145 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
146 |
+
metrics:
|
147 |
+
- type: v_measure
|
148 |
+
value: 36.675626784714
|
149 |
+
- task:
|
150 |
+
type: Reranking
|
151 |
+
dataset:
|
152 |
+
type: mteb/askubuntudupquestions-reranking
|
153 |
+
name: MTEB AskUbuntuDupQuestions
|
154 |
+
config: default
|
155 |
+
split: test
|
156 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
157 |
+
metrics:
|
158 |
+
- type: map
|
159 |
+
value: 62.247725694904034
|
160 |
+
- type: mrr
|
161 |
+
value: 74.91359978894604
|
162 |
+
- task:
|
163 |
+
type: STS
|
164 |
+
dataset:
|
165 |
+
type: mteb/biosses-sts
|
166 |
+
name: MTEB BIOSSES
|
167 |
+
config: default
|
168 |
+
split: test
|
169 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
170 |
+
metrics:
|
171 |
+
- type: cos_sim_pearson
|
172 |
+
value: 82.68003802970496
|
173 |
+
- type: cos_sim_spearman
|
174 |
+
value: 81.23438110096286
|
175 |
+
- type: euclidean_pearson
|
176 |
+
value: 81.87462986142582
|
177 |
+
- type: euclidean_spearman
|
178 |
+
value: 81.23438110096286
|
179 |
+
- type: manhattan_pearson
|
180 |
+
value: 81.61162566600755
|
181 |
+
- type: manhattan_spearman
|
182 |
+
value: 81.11329400456184
|
183 |
+
- task:
|
184 |
+
type: Classification
|
185 |
+
dataset:
|
186 |
+
type: mteb/banking77
|
187 |
+
name: MTEB Banking77Classification
|
188 |
+
config: default
|
189 |
+
split: test
|
190 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
191 |
+
metrics:
|
192 |
+
- type: accuracy
|
193 |
+
value: 84.01298701298701
|
194 |
+
- type: f1
|
195 |
+
value: 83.31690714969382
|
196 |
+
- task:
|
197 |
+
type: Clustering
|
198 |
+
dataset:
|
199 |
+
type: mteb/biorxiv-clustering-p2p
|
200 |
+
name: MTEB BiorxivClusteringP2P
|
201 |
+
config: default
|
202 |
+
split: test
|
203 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
204 |
+
metrics:
|
205 |
+
- type: v_measure
|
206 |
+
value: 37.050108150972086
|
207 |
+
- task:
|
208 |
+
type: Clustering
|
209 |
+
dataset:
|
210 |
+
type: mteb/biorxiv-clustering-s2s
|
211 |
+
name: MTEB BiorxivClusteringS2S
|
212 |
+
config: default
|
213 |
+
split: test
|
214 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
215 |
+
metrics:
|
216 |
+
- type: v_measure
|
217 |
+
value: 30.15731442819715
|
218 |
+
- task:
|
219 |
+
type: Retrieval
|
220 |
+
dataset:
|
221 |
+
type: BeIR/cqadupstack
|
222 |
+
name: MTEB CQADupstackAndroidRetrieval
|
223 |
+
config: default
|
224 |
+
split: test
|
225 |
+
revision: None
|
226 |
+
metrics:
|
227 |
+
- type: map_at_1
|
228 |
+
value: 31.391999999999996
|
229 |
+
- type: map_at_10
|
230 |
+
value: 42.597
|
231 |
+
- type: map_at_100
|
232 |
+
value: 44.07
|
233 |
+
- type: map_at_1000
|
234 |
+
value: 44.198
|
235 |
+
- type: map_at_3
|
236 |
+
value: 38.957
|
237 |
+
- type: map_at_5
|
238 |
+
value: 40.961
|
239 |
+
- type: mrr_at_1
|
240 |
+
value: 37.196
|
241 |
+
- type: mrr_at_10
|
242 |
+
value: 48.152
|
243 |
+
- type: mrr_at_100
|
244 |
+
value: 48.928
|
245 |
+
- type: mrr_at_1000
|
246 |
+
value: 48.964999999999996
|
247 |
+
- type: mrr_at_3
|
248 |
+
value: 45.446
|
249 |
+
- type: mrr_at_5
|
250 |
+
value: 47.205999999999996
|
251 |
+
- type: ndcg_at_1
|
252 |
+
value: 37.196
|
253 |
+
- type: ndcg_at_10
|
254 |
+
value: 49.089
|
255 |
+
- type: ndcg_at_100
|
256 |
+
value: 54.471000000000004
|
257 |
+
- type: ndcg_at_1000
|
258 |
+
value: 56.385
|
259 |
+
- type: ndcg_at_3
|
260 |
+
value: 43.699
|
261 |
+
- type: ndcg_at_5
|
262 |
+
value: 46.22
|
263 |
+
- type: precision_at_1
|
264 |
+
value: 37.196
|
265 |
+
- type: precision_at_10
|
266 |
+
value: 9.313
|
267 |
+
- type: precision_at_100
|
268 |
+
value: 1.478
|
269 |
+
- type: precision_at_1000
|
270 |
+
value: 0.198
|
271 |
+
- type: precision_at_3
|
272 |
+
value: 20.839
|
273 |
+
- type: precision_at_5
|
274 |
+
value: 14.936
|
275 |
+
- type: recall_at_1
|
276 |
+
value: 31.391999999999996
|
277 |
+
- type: recall_at_10
|
278 |
+
value: 61.876
|
279 |
+
- type: recall_at_100
|
280 |
+
value: 84.214
|
281 |
+
- type: recall_at_1000
|
282 |
+
value: 95.985
|
283 |
+
- type: recall_at_3
|
284 |
+
value: 46.6
|
285 |
+
- type: recall_at_5
|
286 |
+
value: 53.588
|
287 |
+
- task:
|
288 |
+
type: Retrieval
|
289 |
+
dataset:
|
290 |
+
type: BeIR/cqadupstack
|
291 |
+
name: MTEB CQADupstackEnglishRetrieval
|
292 |
+
config: default
|
293 |
+
split: test
|
294 |
+
revision: None
|
295 |
+
metrics:
|
296 |
+
- type: map_at_1
|
297 |
+
value: 29.083
|
298 |
+
- type: map_at_10
|
299 |
+
value: 38.812999999999995
|
300 |
+
- type: map_at_100
|
301 |
+
value: 40.053
|
302 |
+
- type: map_at_1000
|
303 |
+
value: 40.188
|
304 |
+
- type: map_at_3
|
305 |
+
value: 36.111
|
306 |
+
- type: map_at_5
|
307 |
+
value: 37.519000000000005
|
308 |
+
- type: mrr_at_1
|
309 |
+
value: 36.497
|
310 |
+
- type: mrr_at_10
|
311 |
+
value: 44.85
|
312 |
+
- type: mrr_at_100
|
313 |
+
value: 45.546
|
314 |
+
- type: mrr_at_1000
|
315 |
+
value: 45.593
|
316 |
+
- type: mrr_at_3
|
317 |
+
value: 42.686
|
318 |
+
- type: mrr_at_5
|
319 |
+
value: 43.909
|
320 |
+
- type: ndcg_at_1
|
321 |
+
value: 36.497
|
322 |
+
- type: ndcg_at_10
|
323 |
+
value: 44.443
|
324 |
+
- type: ndcg_at_100
|
325 |
+
value: 48.979
|
326 |
+
- type: ndcg_at_1000
|
327 |
+
value: 51.154999999999994
|
328 |
+
- type: ndcg_at_3
|
329 |
+
value: 40.660000000000004
|
330 |
+
- type: ndcg_at_5
|
331 |
+
value: 42.193000000000005
|
332 |
+
- type: precision_at_1
|
333 |
+
value: 36.497
|
334 |
+
- type: precision_at_10
|
335 |
+
value: 8.433
|
336 |
+
- type: precision_at_100
|
337 |
+
value: 1.369
|
338 |
+
- type: precision_at_1000
|
339 |
+
value: 0.185
|
340 |
+
- type: precision_at_3
|
341 |
+
value: 19.894000000000002
|
342 |
+
- type: precision_at_5
|
343 |
+
value: 13.873
|
344 |
+
- type: recall_at_1
|
345 |
+
value: 29.083
|
346 |
+
- type: recall_at_10
|
347 |
+
value: 54.313
|
348 |
+
- type: recall_at_100
|
349 |
+
value: 73.792
|
350 |
+
- type: recall_at_1000
|
351 |
+
value: 87.629
|
352 |
+
- type: recall_at_3
|
353 |
+
value: 42.257
|
354 |
+
- type: recall_at_5
|
355 |
+
value: 47.066
|
356 |
+
- task:
|
357 |
+
type: Retrieval
|
358 |
+
dataset:
|
359 |
+
type: BeIR/cqadupstack
|
360 |
+
name: MTEB CQADupstackGamingRetrieval
|
361 |
+
config: default
|
362 |
+
split: test
|
363 |
+
revision: None
|
364 |
+
metrics:
|
365 |
+
- type: map_at_1
|
366 |
+
value: 38.556000000000004
|
367 |
+
- type: map_at_10
|
368 |
+
value: 50.698
|
369 |
+
- type: map_at_100
|
370 |
+
value: 51.705
|
371 |
+
- type: map_at_1000
|
372 |
+
value: 51.768
|
373 |
+
- type: map_at_3
|
374 |
+
value: 47.848
|
375 |
+
- type: map_at_5
|
376 |
+
value: 49.358000000000004
|
377 |
+
- type: mrr_at_1
|
378 |
+
value: 43.95
|
379 |
+
- type: mrr_at_10
|
380 |
+
value: 54.191
|
381 |
+
- type: mrr_at_100
|
382 |
+
value: 54.852999999999994
|
383 |
+
- type: mrr_at_1000
|
384 |
+
value: 54.885
|
385 |
+
- type: mrr_at_3
|
386 |
+
value: 51.954
|
387 |
+
- type: mrr_at_5
|
388 |
+
value: 53.13
|
389 |
+
- type: ndcg_at_1
|
390 |
+
value: 43.95
|
391 |
+
- type: ndcg_at_10
|
392 |
+
value: 56.516
|
393 |
+
- type: ndcg_at_100
|
394 |
+
value: 60.477000000000004
|
395 |
+
- type: ndcg_at_1000
|
396 |
+
value: 61.746
|
397 |
+
- type: ndcg_at_3
|
398 |
+
value: 51.601
|
399 |
+
- type: ndcg_at_5
|
400 |
+
value: 53.795
|
401 |
+
- type: precision_at_1
|
402 |
+
value: 43.95
|
403 |
+
- type: precision_at_10
|
404 |
+
value: 9.009
|
405 |
+
- type: precision_at_100
|
406 |
+
value: 1.189
|
407 |
+
- type: precision_at_1000
|
408 |
+
value: 0.135
|
409 |
+
- type: precision_at_3
|
410 |
+
value: 22.989
|
411 |
+
- type: precision_at_5
|
412 |
+
value: 15.473
|
413 |
+
- type: recall_at_1
|
414 |
+
value: 38.556000000000004
|
415 |
+
- type: recall_at_10
|
416 |
+
value: 70.159
|
417 |
+
- type: recall_at_100
|
418 |
+
value: 87.132
|
419 |
+
- type: recall_at_1000
|
420 |
+
value: 96.16
|
421 |
+
- type: recall_at_3
|
422 |
+
value: 56.906
|
423 |
+
- type: recall_at_5
|
424 |
+
value: 62.332
|
425 |
+
- task:
|
426 |
+
type: Retrieval
|
427 |
+
dataset:
|
428 |
+
type: BeIR/cqadupstack
|
429 |
+
name: MTEB CQADupstackGisRetrieval
|
430 |
+
config: default
|
431 |
+
split: test
|
432 |
+
revision: None
|
433 |
+
metrics:
|
434 |
+
- type: map_at_1
|
435 |
+
value: 24.238
|
436 |
+
- type: map_at_10
|
437 |
+
value: 32.5
|
438 |
+
- type: map_at_100
|
439 |
+
value: 33.637
|
440 |
+
- type: map_at_1000
|
441 |
+
value: 33.719
|
442 |
+
- type: map_at_3
|
443 |
+
value: 30.026999999999997
|
444 |
+
- type: map_at_5
|
445 |
+
value: 31.555
|
446 |
+
- type: mrr_at_1
|
447 |
+
value: 26.328000000000003
|
448 |
+
- type: mrr_at_10
|
449 |
+
value: 34.44
|
450 |
+
- type: mrr_at_100
|
451 |
+
value: 35.455999999999996
|
452 |
+
- type: mrr_at_1000
|
453 |
+
value: 35.521
|
454 |
+
- type: mrr_at_3
|
455 |
+
value: 32.034
|
456 |
+
- type: mrr_at_5
|
457 |
+
value: 33.565
|
458 |
+
- type: ndcg_at_1
|
459 |
+
value: 26.328000000000003
|
460 |
+
- type: ndcg_at_10
|
461 |
+
value: 37.202
|
462 |
+
- type: ndcg_at_100
|
463 |
+
value: 42.728
|
464 |
+
- type: ndcg_at_1000
|
465 |
+
value: 44.792
|
466 |
+
- type: ndcg_at_3
|
467 |
+
value: 32.368
|
468 |
+
- type: ndcg_at_5
|
469 |
+
value: 35.008
|
470 |
+
- type: precision_at_1
|
471 |
+
value: 26.328000000000003
|
472 |
+
- type: precision_at_10
|
473 |
+
value: 5.7059999999999995
|
474 |
+
- type: precision_at_100
|
475 |
+
value: 0.8880000000000001
|
476 |
+
- type: precision_at_1000
|
477 |
+
value: 0.11100000000000002
|
478 |
+
- type: precision_at_3
|
479 |
+
value: 13.672
|
480 |
+
- type: precision_at_5
|
481 |
+
value: 9.74
|
482 |
+
- type: recall_at_1
|
483 |
+
value: 24.238
|
484 |
+
- type: recall_at_10
|
485 |
+
value: 49.829
|
486 |
+
- type: recall_at_100
|
487 |
+
value: 75.21
|
488 |
+
- type: recall_at_1000
|
489 |
+
value: 90.521
|
490 |
+
- type: recall_at_3
|
491 |
+
value: 36.867
|
492 |
+
- type: recall_at_5
|
493 |
+
value: 43.241
|
494 |
+
- task:
|
495 |
+
type: Retrieval
|
496 |
+
dataset:
|
497 |
+
type: BeIR/cqadupstack
|
498 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
499 |
+
config: default
|
500 |
+
split: test
|
501 |
+
revision: None
|
502 |
+
metrics:
|
503 |
+
- type: map_at_1
|
504 |
+
value: 15.378
|
505 |
+
- type: map_at_10
|
506 |
+
value: 22.817999999999998
|
507 |
+
- type: map_at_100
|
508 |
+
value: 23.977999999999998
|
509 |
+
- type: map_at_1000
|
510 |
+
value: 24.108
|
511 |
+
- type: map_at_3
|
512 |
+
value: 20.719
|
513 |
+
- type: map_at_5
|
514 |
+
value: 21.889
|
515 |
+
- type: mrr_at_1
|
516 |
+
value: 19.03
|
517 |
+
- type: mrr_at_10
|
518 |
+
value: 27.022000000000002
|
519 |
+
- type: mrr_at_100
|
520 |
+
value: 28.011999999999997
|
521 |
+
- type: mrr_at_1000
|
522 |
+
value: 28.096
|
523 |
+
- type: mrr_at_3
|
524 |
+
value: 24.855
|
525 |
+
- type: mrr_at_5
|
526 |
+
value: 26.029999999999998
|
527 |
+
- type: ndcg_at_1
|
528 |
+
value: 19.03
|
529 |
+
- type: ndcg_at_10
|
530 |
+
value: 27.526
|
531 |
+
- type: ndcg_at_100
|
532 |
+
value: 33.040000000000006
|
533 |
+
- type: ndcg_at_1000
|
534 |
+
value: 36.187000000000005
|
535 |
+
- type: ndcg_at_3
|
536 |
+
value: 23.497
|
537 |
+
- type: ndcg_at_5
|
538 |
+
value: 25.334
|
539 |
+
- type: precision_at_1
|
540 |
+
value: 19.03
|
541 |
+
- type: precision_at_10
|
542 |
+
value: 4.963
|
543 |
+
- type: precision_at_100
|
544 |
+
value: 0.893
|
545 |
+
- type: precision_at_1000
|
546 |
+
value: 0.13
|
547 |
+
- type: precision_at_3
|
548 |
+
value: 11.360000000000001
|
549 |
+
- type: precision_at_5
|
550 |
+
value: 8.134
|
551 |
+
- type: recall_at_1
|
552 |
+
value: 15.378
|
553 |
+
- type: recall_at_10
|
554 |
+
value: 38.061
|
555 |
+
- type: recall_at_100
|
556 |
+
value: 61.754
|
557 |
+
- type: recall_at_1000
|
558 |
+
value: 84.259
|
559 |
+
- type: recall_at_3
|
560 |
+
value: 26.788
|
561 |
+
- type: recall_at_5
|
562 |
+
value: 31.326999999999998
|
563 |
+
- task:
|
564 |
+
type: Retrieval
|
565 |
+
dataset:
|
566 |
+
type: BeIR/cqadupstack
|
567 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
568 |
+
config: default
|
569 |
+
split: test
|
570 |
+
revision: None
|
571 |
+
metrics:
|
572 |
+
- type: map_at_1
|
573 |
+
value: 27.511999999999997
|
574 |
+
- type: map_at_10
|
575 |
+
value: 37.429
|
576 |
+
- type: map_at_100
|
577 |
+
value: 38.818000000000005
|
578 |
+
- type: map_at_1000
|
579 |
+
value: 38.924
|
580 |
+
- type: map_at_3
|
581 |
+
value: 34.625
|
582 |
+
- type: map_at_5
|
583 |
+
value: 36.064
|
584 |
+
- type: mrr_at_1
|
585 |
+
value: 33.300999999999995
|
586 |
+
- type: mrr_at_10
|
587 |
+
value: 43.036
|
588 |
+
- type: mrr_at_100
|
589 |
+
value: 43.894
|
590 |
+
- type: mrr_at_1000
|
591 |
+
value: 43.936
|
592 |
+
- type: mrr_at_3
|
593 |
+
value: 40.825
|
594 |
+
- type: mrr_at_5
|
595 |
+
value: 42.028
|
596 |
+
- type: ndcg_at_1
|
597 |
+
value: 33.300999999999995
|
598 |
+
- type: ndcg_at_10
|
599 |
+
value: 43.229
|
600 |
+
- type: ndcg_at_100
|
601 |
+
value: 48.992000000000004
|
602 |
+
- type: ndcg_at_1000
|
603 |
+
value: 51.02100000000001
|
604 |
+
- type: ndcg_at_3
|
605 |
+
value: 38.794000000000004
|
606 |
+
- type: ndcg_at_5
|
607 |
+
value: 40.65
|
608 |
+
- type: precision_at_1
|
609 |
+
value: 33.300999999999995
|
610 |
+
- type: precision_at_10
|
611 |
+
value: 7.777000000000001
|
612 |
+
- type: precision_at_100
|
613 |
+
value: 1.269
|
614 |
+
- type: precision_at_1000
|
615 |
+
value: 0.163
|
616 |
+
- type: precision_at_3
|
617 |
+
value: 18.351
|
618 |
+
- type: precision_at_5
|
619 |
+
value: 12.762
|
620 |
+
- type: recall_at_1
|
621 |
+
value: 27.511999999999997
|
622 |
+
- type: recall_at_10
|
623 |
+
value: 54.788000000000004
|
624 |
+
- type: recall_at_100
|
625 |
+
value: 79.105
|
626 |
+
- type: recall_at_1000
|
627 |
+
value: 92.49199999999999
|
628 |
+
- type: recall_at_3
|
629 |
+
value: 41.924
|
630 |
+
- type: recall_at_5
|
631 |
+
value: 47.026
|
632 |
+
- task:
|
633 |
+
type: Retrieval
|
634 |
+
dataset:
|
635 |
+
type: BeIR/cqadupstack
|
636 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
637 |
+
config: default
|
638 |
+
split: test
|
639 |
+
revision: None
|
640 |
+
metrics:
|
641 |
+
- type: map_at_1
|
642 |
+
value: 24.117
|
643 |
+
- type: map_at_10
|
644 |
+
value: 33.32
|
645 |
+
- type: map_at_100
|
646 |
+
value: 34.677
|
647 |
+
- type: map_at_1000
|
648 |
+
value: 34.78
|
649 |
+
- type: map_at_3
|
650 |
+
value: 30.233999999999998
|
651 |
+
- type: map_at_5
|
652 |
+
value: 31.668000000000003
|
653 |
+
- type: mrr_at_1
|
654 |
+
value: 29.566
|
655 |
+
- type: mrr_at_10
|
656 |
+
value: 38.244
|
657 |
+
- type: mrr_at_100
|
658 |
+
value: 39.245000000000005
|
659 |
+
- type: mrr_at_1000
|
660 |
+
value: 39.296
|
661 |
+
- type: mrr_at_3
|
662 |
+
value: 35.864000000000004
|
663 |
+
- type: mrr_at_5
|
664 |
+
value: 36.919999999999995
|
665 |
+
- type: ndcg_at_1
|
666 |
+
value: 29.566
|
667 |
+
- type: ndcg_at_10
|
668 |
+
value: 39.127
|
669 |
+
- type: ndcg_at_100
|
670 |
+
value: 44.989000000000004
|
671 |
+
- type: ndcg_at_1000
|
672 |
+
value: 47.189
|
673 |
+
- type: ndcg_at_3
|
674 |
+
value: 34.039
|
675 |
+
- type: ndcg_at_5
|
676 |
+
value: 35.744
|
677 |
+
- type: precision_at_1
|
678 |
+
value: 29.566
|
679 |
+
- type: precision_at_10
|
680 |
+
value: 7.385999999999999
|
681 |
+
- type: precision_at_100
|
682 |
+
value: 1.204
|
683 |
+
- type: precision_at_1000
|
684 |
+
value: 0.158
|
685 |
+
- type: precision_at_3
|
686 |
+
value: 16.286
|
687 |
+
- type: precision_at_5
|
688 |
+
value: 11.484
|
689 |
+
- type: recall_at_1
|
690 |
+
value: 24.117
|
691 |
+
- type: recall_at_10
|
692 |
+
value: 51.559999999999995
|
693 |
+
- type: recall_at_100
|
694 |
+
value: 77.104
|
695 |
+
- type: recall_at_1000
|
696 |
+
value: 91.79899999999999
|
697 |
+
- type: recall_at_3
|
698 |
+
value: 36.82
|
699 |
+
- type: recall_at_5
|
700 |
+
value: 41.453
|
701 |
+
- task:
|
702 |
+
type: Retrieval
|
703 |
+
dataset:
|
704 |
+
type: BeIR/cqadupstack
|
705 |
+
name: MTEB CQADupstackRetrieval
|
706 |
+
config: default
|
707 |
+
split: test
|
708 |
+
revision: None
|
709 |
+
metrics:
|
710 |
+
- type: map_at_1
|
711 |
+
value: 25.17625
|
712 |
+
- type: map_at_10
|
713 |
+
value: 34.063916666666664
|
714 |
+
- type: map_at_100
|
715 |
+
value: 35.255500000000005
|
716 |
+
- type: map_at_1000
|
717 |
+
value: 35.37275
|
718 |
+
- type: map_at_3
|
719 |
+
value: 31.351666666666667
|
720 |
+
- type: map_at_5
|
721 |
+
value: 32.80608333333333
|
722 |
+
- type: mrr_at_1
|
723 |
+
value: 29.59783333333333
|
724 |
+
- type: mrr_at_10
|
725 |
+
value: 38.0925
|
726 |
+
- type: mrr_at_100
|
727 |
+
value: 38.957249999999995
|
728 |
+
- type: mrr_at_1000
|
729 |
+
value: 39.01608333333333
|
730 |
+
- type: mrr_at_3
|
731 |
+
value: 35.77625
|
732 |
+
- type: mrr_at_5
|
733 |
+
value: 37.04991666666667
|
734 |
+
- type: ndcg_at_1
|
735 |
+
value: 29.59783333333333
|
736 |
+
- type: ndcg_at_10
|
737 |
+
value: 39.343666666666664
|
738 |
+
- type: ndcg_at_100
|
739 |
+
value: 44.488249999999994
|
740 |
+
- type: ndcg_at_1000
|
741 |
+
value: 46.83358333333334
|
742 |
+
- type: ndcg_at_3
|
743 |
+
value: 34.69708333333333
|
744 |
+
- type: ndcg_at_5
|
745 |
+
value: 36.75075
|
746 |
+
- type: precision_at_1
|
747 |
+
value: 29.59783333333333
|
748 |
+
- type: precision_at_10
|
749 |
+
value: 6.884083333333332
|
750 |
+
- type: precision_at_100
|
751 |
+
value: 1.114
|
752 |
+
- type: precision_at_1000
|
753 |
+
value: 0.15108333333333332
|
754 |
+
- type: precision_at_3
|
755 |
+
value: 15.965250000000003
|
756 |
+
- type: precision_at_5
|
757 |
+
value: 11.246500000000001
|
758 |
+
- type: recall_at_1
|
759 |
+
value: 25.17625
|
760 |
+
- type: recall_at_10
|
761 |
+
value: 51.015999999999984
|
762 |
+
- type: recall_at_100
|
763 |
+
value: 73.60174999999998
|
764 |
+
- type: recall_at_1000
|
765 |
+
value: 89.849
|
766 |
+
- type: recall_at_3
|
767 |
+
value: 37.88399999999999
|
768 |
+
- type: recall_at_5
|
769 |
+
value: 43.24541666666666
|
770 |
+
- task:
|
771 |
+
type: Retrieval
|
772 |
+
dataset:
|
773 |
+
type: BeIR/cqadupstack
|
774 |
+
name: MTEB CQADupstackStatsRetrieval
|
775 |
+
config: default
|
776 |
+
split: test
|
777 |
+
revision: None
|
778 |
+
metrics:
|
779 |
+
- type: map_at_1
|
780 |
+
value: 24.537
|
781 |
+
- type: map_at_10
|
782 |
+
value: 31.081999999999997
|
783 |
+
- type: map_at_100
|
784 |
+
value: 32.042
|
785 |
+
- type: map_at_1000
|
786 |
+
value: 32.141
|
787 |
+
- type: map_at_3
|
788 |
+
value: 29.137
|
789 |
+
- type: map_at_5
|
790 |
+
value: 30.079
|
791 |
+
- type: mrr_at_1
|
792 |
+
value: 27.454
|
793 |
+
- type: mrr_at_10
|
794 |
+
value: 33.694
|
795 |
+
- type: mrr_at_100
|
796 |
+
value: 34.579
|
797 |
+
- type: mrr_at_1000
|
798 |
+
value: 34.649
|
799 |
+
- type: mrr_at_3
|
800 |
+
value: 32.004
|
801 |
+
- type: mrr_at_5
|
802 |
+
value: 32.794000000000004
|
803 |
+
- type: ndcg_at_1
|
804 |
+
value: 27.454
|
805 |
+
- type: ndcg_at_10
|
806 |
+
value: 34.915
|
807 |
+
- type: ndcg_at_100
|
808 |
+
value: 39.641
|
809 |
+
- type: ndcg_at_1000
|
810 |
+
value: 42.105
|
811 |
+
- type: ndcg_at_3
|
812 |
+
value: 31.276
|
813 |
+
- type: ndcg_at_5
|
814 |
+
value: 32.65
|
815 |
+
- type: precision_at_1
|
816 |
+
value: 27.454
|
817 |
+
- type: precision_at_10
|
818 |
+
value: 5.337
|
819 |
+
- type: precision_at_100
|
820 |
+
value: 0.8250000000000001
|
821 |
+
- type: precision_at_1000
|
822 |
+
value: 0.11199999999999999
|
823 |
+
- type: precision_at_3
|
824 |
+
value: 13.241
|
825 |
+
- type: precision_at_5
|
826 |
+
value: 8.895999999999999
|
827 |
+
- type: recall_at_1
|
828 |
+
value: 24.537
|
829 |
+
- type: recall_at_10
|
830 |
+
value: 44.324999999999996
|
831 |
+
- type: recall_at_100
|
832 |
+
value: 65.949
|
833 |
+
- type: recall_at_1000
|
834 |
+
value: 84.017
|
835 |
+
- type: recall_at_3
|
836 |
+
value: 33.857
|
837 |
+
- type: recall_at_5
|
838 |
+
value: 37.316
|
839 |
+
- task:
|
840 |
+
type: Retrieval
|
841 |
+
dataset:
|
842 |
+
type: BeIR/cqadupstack
|
843 |
+
name: MTEB CQADupstackTexRetrieval
|
844 |
+
config: default
|
845 |
+
split: test
|
846 |
+
revision: None
|
847 |
+
metrics:
|
848 |
+
- type: map_at_1
|
849 |
+
value: 17.122
|
850 |
+
- type: map_at_10
|
851 |
+
value: 24.32
|
852 |
+
- type: map_at_100
|
853 |
+
value: 25.338
|
854 |
+
- type: map_at_1000
|
855 |
+
value: 25.462
|
856 |
+
- type: map_at_3
|
857 |
+
value: 22.064
|
858 |
+
- type: map_at_5
|
859 |
+
value: 23.322000000000003
|
860 |
+
- type: mrr_at_1
|
861 |
+
value: 20.647
|
862 |
+
- type: mrr_at_10
|
863 |
+
value: 27.858
|
864 |
+
- type: mrr_at_100
|
865 |
+
value: 28.743999999999996
|
866 |
+
- type: mrr_at_1000
|
867 |
+
value: 28.819
|
868 |
+
- type: mrr_at_3
|
869 |
+
value: 25.769
|
870 |
+
- type: mrr_at_5
|
871 |
+
value: 26.964
|
872 |
+
- type: ndcg_at_1
|
873 |
+
value: 20.647
|
874 |
+
- type: ndcg_at_10
|
875 |
+
value: 28.849999999999998
|
876 |
+
- type: ndcg_at_100
|
877 |
+
value: 33.849000000000004
|
878 |
+
- type: ndcg_at_1000
|
879 |
+
value: 36.802
|
880 |
+
- type: ndcg_at_3
|
881 |
+
value: 24.799
|
882 |
+
- type: ndcg_at_5
|
883 |
+
value: 26.682
|
884 |
+
- type: precision_at_1
|
885 |
+
value: 20.647
|
886 |
+
- type: precision_at_10
|
887 |
+
value: 5.2170000000000005
|
888 |
+
- type: precision_at_100
|
889 |
+
value: 0.906
|
890 |
+
- type: precision_at_1000
|
891 |
+
value: 0.134
|
892 |
+
- type: precision_at_3
|
893 |
+
value: 11.769
|
894 |
+
- type: precision_at_5
|
895 |
+
value: 8.486
|
896 |
+
- type: recall_at_1
|
897 |
+
value: 17.122
|
898 |
+
- type: recall_at_10
|
899 |
+
value: 38.999
|
900 |
+
- type: recall_at_100
|
901 |
+
value: 61.467000000000006
|
902 |
+
- type: recall_at_1000
|
903 |
+
value: 82.716
|
904 |
+
- type: recall_at_3
|
905 |
+
value: 27.601
|
906 |
+
- type: recall_at_5
|
907 |
+
value: 32.471
|
908 |
+
- task:
|
909 |
+
type: Retrieval
|
910 |
+
dataset:
|
911 |
+
type: BeIR/cqadupstack
|
912 |
+
name: MTEB CQADupstackUnixRetrieval
|
913 |
+
config: default
|
914 |
+
split: test
|
915 |
+
revision: None
|
916 |
+
metrics:
|
917 |
+
- type: map_at_1
|
918 |
+
value: 24.396
|
919 |
+
- type: map_at_10
|
920 |
+
value: 33.415
|
921 |
+
- type: map_at_100
|
922 |
+
value: 34.521
|
923 |
+
- type: map_at_1000
|
924 |
+
value: 34.631
|
925 |
+
- type: map_at_3
|
926 |
+
value: 30.703999999999997
|
927 |
+
- type: map_at_5
|
928 |
+
value: 32.166
|
929 |
+
- type: mrr_at_1
|
930 |
+
value: 28.825
|
931 |
+
- type: mrr_at_10
|
932 |
+
value: 37.397000000000006
|
933 |
+
- type: mrr_at_100
|
934 |
+
value: 38.286
|
935 |
+
- type: mrr_at_1000
|
936 |
+
value: 38.346000000000004
|
937 |
+
- type: mrr_at_3
|
938 |
+
value: 35.028
|
939 |
+
- type: mrr_at_5
|
940 |
+
value: 36.32
|
941 |
+
- type: ndcg_at_1
|
942 |
+
value: 28.825
|
943 |
+
- type: ndcg_at_10
|
944 |
+
value: 38.656
|
945 |
+
- type: ndcg_at_100
|
946 |
+
value: 43.856
|
947 |
+
- type: ndcg_at_1000
|
948 |
+
value: 46.31
|
949 |
+
- type: ndcg_at_3
|
950 |
+
value: 33.793
|
951 |
+
- type: ndcg_at_5
|
952 |
+
value: 35.909
|
953 |
+
- type: precision_at_1
|
954 |
+
value: 28.825
|
955 |
+
- type: precision_at_10
|
956 |
+
value: 6.567
|
957 |
+
- type: precision_at_100
|
958 |
+
value: 1.0330000000000001
|
959 |
+
- type: precision_at_1000
|
960 |
+
value: 0.135
|
961 |
+
- type: precision_at_3
|
962 |
+
value: 15.516
|
963 |
+
- type: precision_at_5
|
964 |
+
value: 10.914
|
965 |
+
- type: recall_at_1
|
966 |
+
value: 24.396
|
967 |
+
- type: recall_at_10
|
968 |
+
value: 50.747
|
969 |
+
- type: recall_at_100
|
970 |
+
value: 73.477
|
971 |
+
- type: recall_at_1000
|
972 |
+
value: 90.801
|
973 |
+
- type: recall_at_3
|
974 |
+
value: 37.1
|
975 |
+
- type: recall_at_5
|
976 |
+
value: 42.589
|
977 |
+
- task:
|
978 |
+
type: Retrieval
|
979 |
+
dataset:
|
980 |
+
type: BeIR/cqadupstack
|
981 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
982 |
+
config: default
|
983 |
+
split: test
|
984 |
+
revision: None
|
985 |
+
metrics:
|
986 |
+
- type: map_at_1
|
987 |
+
value: 25.072
|
988 |
+
- type: map_at_10
|
989 |
+
value: 34.307
|
990 |
+
- type: map_at_100
|
991 |
+
value: 35.725
|
992 |
+
- type: map_at_1000
|
993 |
+
value: 35.943999999999996
|
994 |
+
- type: map_at_3
|
995 |
+
value: 30.906
|
996 |
+
- type: map_at_5
|
997 |
+
value: 32.818000000000005
|
998 |
+
- type: mrr_at_1
|
999 |
+
value: 29.644
|
1000 |
+
- type: mrr_at_10
|
1001 |
+
value: 38.673
|
1002 |
+
- type: mrr_at_100
|
1003 |
+
value: 39.459
|
1004 |
+
- type: mrr_at_1000
|
1005 |
+
value: 39.527
|
1006 |
+
- type: mrr_at_3
|
1007 |
+
value: 35.771
|
1008 |
+
- type: mrr_at_5
|
1009 |
+
value: 37.332
|
1010 |
+
- type: ndcg_at_1
|
1011 |
+
value: 29.644
|
1012 |
+
- type: ndcg_at_10
|
1013 |
+
value: 40.548
|
1014 |
+
- type: ndcg_at_100
|
1015 |
+
value: 45.678999999999995
|
1016 |
+
- type: ndcg_at_1000
|
1017 |
+
value: 48.488
|
1018 |
+
- type: ndcg_at_3
|
1019 |
+
value: 34.887
|
1020 |
+
- type: ndcg_at_5
|
1021 |
+
value: 37.543
|
1022 |
+
- type: precision_at_1
|
1023 |
+
value: 29.644
|
1024 |
+
- type: precision_at_10
|
1025 |
+
value: 7.688000000000001
|
1026 |
+
- type: precision_at_100
|
1027 |
+
value: 1.482
|
1028 |
+
- type: precision_at_1000
|
1029 |
+
value: 0.23600000000000002
|
1030 |
+
- type: precision_at_3
|
1031 |
+
value: 16.206
|
1032 |
+
- type: precision_at_5
|
1033 |
+
value: 12.016
|
1034 |
+
- type: recall_at_1
|
1035 |
+
value: 25.072
|
1036 |
+
- type: recall_at_10
|
1037 |
+
value: 53.478
|
1038 |
+
- type: recall_at_100
|
1039 |
+
value: 76.07300000000001
|
1040 |
+
- type: recall_at_1000
|
1041 |
+
value: 93.884
|
1042 |
+
- type: recall_at_3
|
1043 |
+
value: 37.583
|
1044 |
+
- type: recall_at_5
|
1045 |
+
value: 44.464
|
1046 |
+
- task:
|
1047 |
+
type: Retrieval
|
1048 |
+
dataset:
|
1049 |
+
type: BeIR/cqadupstack
|
1050 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1051 |
+
config: default
|
1052 |
+
split: test
|
1053 |
+
revision: None
|
1054 |
+
metrics:
|
1055 |
+
- type: map_at_1
|
1056 |
+
value: 20.712
|
1057 |
+
- type: map_at_10
|
1058 |
+
value: 27.467999999999996
|
1059 |
+
- type: map_at_100
|
1060 |
+
value: 28.502
|
1061 |
+
- type: map_at_1000
|
1062 |
+
value: 28.610000000000003
|
1063 |
+
- type: map_at_3
|
1064 |
+
value: 24.887999999999998
|
1065 |
+
- type: map_at_5
|
1066 |
+
value: 26.273999999999997
|
1067 |
+
- type: mrr_at_1
|
1068 |
+
value: 22.736
|
1069 |
+
- type: mrr_at_10
|
1070 |
+
value: 29.553
|
1071 |
+
- type: mrr_at_100
|
1072 |
+
value: 30.485
|
1073 |
+
- type: mrr_at_1000
|
1074 |
+
value: 30.56
|
1075 |
+
- type: mrr_at_3
|
1076 |
+
value: 27.078999999999997
|
1077 |
+
- type: mrr_at_5
|
1078 |
+
value: 28.401
|
1079 |
+
- type: ndcg_at_1
|
1080 |
+
value: 22.736
|
1081 |
+
- type: ndcg_at_10
|
1082 |
+
value: 32.023
|
1083 |
+
- type: ndcg_at_100
|
1084 |
+
value: 37.158
|
1085 |
+
- type: ndcg_at_1000
|
1086 |
+
value: 39.823
|
1087 |
+
- type: ndcg_at_3
|
1088 |
+
value: 26.951999999999998
|
1089 |
+
- type: ndcg_at_5
|
1090 |
+
value: 29.281000000000002
|
1091 |
+
- type: precision_at_1
|
1092 |
+
value: 22.736
|
1093 |
+
- type: precision_at_10
|
1094 |
+
value: 5.213
|
1095 |
+
- type: precision_at_100
|
1096 |
+
value: 0.832
|
1097 |
+
- type: precision_at_1000
|
1098 |
+
value: 0.116
|
1099 |
+
- type: precision_at_3
|
1100 |
+
value: 11.459999999999999
|
1101 |
+
- type: precision_at_5
|
1102 |
+
value: 8.244
|
1103 |
+
- type: recall_at_1
|
1104 |
+
value: 20.712
|
1105 |
+
- type: recall_at_10
|
1106 |
+
value: 44.057
|
1107 |
+
- type: recall_at_100
|
1108 |
+
value: 67.944
|
1109 |
+
- type: recall_at_1000
|
1110 |
+
value: 87.925
|
1111 |
+
- type: recall_at_3
|
1112 |
+
value: 30.305
|
1113 |
+
- type: recall_at_5
|
1114 |
+
value: 36.071999999999996
|
1115 |
+
- task:
|
1116 |
+
type: Retrieval
|
1117 |
+
dataset:
|
1118 |
+
type: climate-fever
|
1119 |
+
name: MTEB ClimateFEVER
|
1120 |
+
config: default
|
1121 |
+
split: test
|
1122 |
+
revision: None
|
1123 |
+
metrics:
|
1124 |
+
- type: map_at_1
|
1125 |
+
value: 10.181999999999999
|
1126 |
+
- type: map_at_10
|
1127 |
+
value: 16.66
|
1128 |
+
- type: map_at_100
|
1129 |
+
value: 18.273
|
1130 |
+
- type: map_at_1000
|
1131 |
+
value: 18.45
|
1132 |
+
- type: map_at_3
|
1133 |
+
value: 14.141
|
1134 |
+
- type: map_at_5
|
1135 |
+
value: 15.455
|
1136 |
+
- type: mrr_at_1
|
1137 |
+
value: 22.15
|
1138 |
+
- type: mrr_at_10
|
1139 |
+
value: 32.062000000000005
|
1140 |
+
- type: mrr_at_100
|
1141 |
+
value: 33.116
|
1142 |
+
- type: mrr_at_1000
|
1143 |
+
value: 33.168
|
1144 |
+
- type: mrr_at_3
|
1145 |
+
value: 28.827
|
1146 |
+
- type: mrr_at_5
|
1147 |
+
value: 30.892999999999997
|
1148 |
+
- type: ndcg_at_1
|
1149 |
+
value: 22.15
|
1150 |
+
- type: ndcg_at_10
|
1151 |
+
value: 23.532
|
1152 |
+
- type: ndcg_at_100
|
1153 |
+
value: 30.358
|
1154 |
+
- type: ndcg_at_1000
|
1155 |
+
value: 33.783
|
1156 |
+
- type: ndcg_at_3
|
1157 |
+
value: 19.222
|
1158 |
+
- type: ndcg_at_5
|
1159 |
+
value: 20.919999999999998
|
1160 |
+
- type: precision_at_1
|
1161 |
+
value: 22.15
|
1162 |
+
- type: precision_at_10
|
1163 |
+
value: 7.185999999999999
|
1164 |
+
- type: precision_at_100
|
1165 |
+
value: 1.433
|
1166 |
+
- type: precision_at_1000
|
1167 |
+
value: 0.207
|
1168 |
+
- type: precision_at_3
|
1169 |
+
value: 13.941
|
1170 |
+
- type: precision_at_5
|
1171 |
+
value: 10.906
|
1172 |
+
- type: recall_at_1
|
1173 |
+
value: 10.181999999999999
|
1174 |
+
- type: recall_at_10
|
1175 |
+
value: 28.104000000000003
|
1176 |
+
- type: recall_at_100
|
1177 |
+
value: 51.998999999999995
|
1178 |
+
- type: recall_at_1000
|
1179 |
+
value: 71.311
|
1180 |
+
- type: recall_at_3
|
1181 |
+
value: 17.698
|
1182 |
+
- type: recall_at_5
|
1183 |
+
value: 22.262999999999998
|
1184 |
+
- task:
|
1185 |
+
type: Retrieval
|
1186 |
+
dataset:
|
1187 |
+
type: dbpedia-entity
|
1188 |
+
name: MTEB DBPedia
|
1189 |
+
config: default
|
1190 |
+
split: test
|
1191 |
+
revision: None
|
1192 |
+
metrics:
|
1193 |
+
- type: map_at_1
|
1194 |
+
value: 6.669
|
1195 |
+
- type: map_at_10
|
1196 |
+
value: 15.552
|
1197 |
+
- type: map_at_100
|
1198 |
+
value: 21.865000000000002
|
1199 |
+
- type: map_at_1000
|
1200 |
+
value: 23.268
|
1201 |
+
- type: map_at_3
|
1202 |
+
value: 11.309
|
1203 |
+
- type: map_at_5
|
1204 |
+
value: 13.084000000000001
|
1205 |
+
- type: mrr_at_1
|
1206 |
+
value: 55.50000000000001
|
1207 |
+
- type: mrr_at_10
|
1208 |
+
value: 66.46600000000001
|
1209 |
+
- type: mrr_at_100
|
1210 |
+
value: 66.944
|
1211 |
+
- type: mrr_at_1000
|
1212 |
+
value: 66.956
|
1213 |
+
- type: mrr_at_3
|
1214 |
+
value: 64.542
|
1215 |
+
- type: mrr_at_5
|
1216 |
+
value: 65.717
|
1217 |
+
- type: ndcg_at_1
|
1218 |
+
value: 44.75
|
1219 |
+
- type: ndcg_at_10
|
1220 |
+
value: 35.049
|
1221 |
+
- type: ndcg_at_100
|
1222 |
+
value: 39.073
|
1223 |
+
- type: ndcg_at_1000
|
1224 |
+
value: 46.208
|
1225 |
+
- type: ndcg_at_3
|
1226 |
+
value: 39.525
|
1227 |
+
- type: ndcg_at_5
|
1228 |
+
value: 37.156
|
1229 |
+
- type: precision_at_1
|
1230 |
+
value: 55.50000000000001
|
1231 |
+
- type: precision_at_10
|
1232 |
+
value: 27.800000000000004
|
1233 |
+
- type: precision_at_100
|
1234 |
+
value: 9.013
|
1235 |
+
- type: precision_at_1000
|
1236 |
+
value: 1.8800000000000001
|
1237 |
+
- type: precision_at_3
|
1238 |
+
value: 42.667
|
1239 |
+
- type: precision_at_5
|
1240 |
+
value: 36.0
|
1241 |
+
- type: recall_at_1
|
1242 |
+
value: 6.669
|
1243 |
+
- type: recall_at_10
|
1244 |
+
value: 21.811
|
1245 |
+
- type: recall_at_100
|
1246 |
+
value: 45.112
|
1247 |
+
- type: recall_at_1000
|
1248 |
+
value: 67.806
|
1249 |
+
- type: recall_at_3
|
1250 |
+
value: 13.373
|
1251 |
+
- type: recall_at_5
|
1252 |
+
value: 16.615
|
1253 |
+
- task:
|
1254 |
+
type: Classification
|
1255 |
+
dataset:
|
1256 |
+
type: mteb/emotion
|
1257 |
+
name: MTEB EmotionClassification
|
1258 |
+
config: default
|
1259 |
+
split: test
|
1260 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1261 |
+
metrics:
|
1262 |
+
- type: accuracy
|
1263 |
+
value: 48.769999999999996
|
1264 |
+
- type: f1
|
1265 |
+
value: 42.91448356376592
|
1266 |
+
- task:
|
1267 |
+
type: Retrieval
|
1268 |
+
dataset:
|
1269 |
+
type: fever
|
1270 |
+
name: MTEB FEVER
|
1271 |
+
config: default
|
1272 |
+
split: test
|
1273 |
+
revision: None
|
1274 |
+
metrics:
|
1275 |
+
- type: map_at_1
|
1276 |
+
value: 54.013
|
1277 |
+
- type: map_at_10
|
1278 |
+
value: 66.239
|
1279 |
+
- type: map_at_100
|
1280 |
+
value: 66.62599999999999
|
1281 |
+
- type: map_at_1000
|
1282 |
+
value: 66.644
|
1283 |
+
- type: map_at_3
|
1284 |
+
value: 63.965
|
1285 |
+
- type: map_at_5
|
1286 |
+
value: 65.45400000000001
|
1287 |
+
- type: mrr_at_1
|
1288 |
+
value: 58.221000000000004
|
1289 |
+
- type: mrr_at_10
|
1290 |
+
value: 70.43700000000001
|
1291 |
+
- type: mrr_at_100
|
1292 |
+
value: 70.744
|
1293 |
+
- type: mrr_at_1000
|
1294 |
+
value: 70.75099999999999
|
1295 |
+
- type: mrr_at_3
|
1296 |
+
value: 68.284
|
1297 |
+
- type: mrr_at_5
|
1298 |
+
value: 69.721
|
1299 |
+
- type: ndcg_at_1
|
1300 |
+
value: 58.221000000000004
|
1301 |
+
- type: ndcg_at_10
|
1302 |
+
value: 72.327
|
1303 |
+
- type: ndcg_at_100
|
1304 |
+
value: 73.953
|
1305 |
+
- type: ndcg_at_1000
|
1306 |
+
value: 74.312
|
1307 |
+
- type: ndcg_at_3
|
1308 |
+
value: 68.062
|
1309 |
+
- type: ndcg_at_5
|
1310 |
+
value: 70.56400000000001
|
1311 |
+
- type: precision_at_1
|
1312 |
+
value: 58.221000000000004
|
1313 |
+
- type: precision_at_10
|
1314 |
+
value: 9.521
|
1315 |
+
- type: precision_at_100
|
1316 |
+
value: 1.045
|
1317 |
+
- type: precision_at_1000
|
1318 |
+
value: 0.109
|
1319 |
+
- type: precision_at_3
|
1320 |
+
value: 27.348
|
1321 |
+
- type: precision_at_5
|
1322 |
+
value: 17.794999999999998
|
1323 |
+
- type: recall_at_1
|
1324 |
+
value: 54.013
|
1325 |
+
- type: recall_at_10
|
1326 |
+
value: 86.957
|
1327 |
+
- type: recall_at_100
|
1328 |
+
value: 93.911
|
1329 |
+
- type: recall_at_1000
|
1330 |
+
value: 96.38
|
1331 |
+
- type: recall_at_3
|
1332 |
+
value: 75.555
|
1333 |
+
- type: recall_at_5
|
1334 |
+
value: 81.671
|
1335 |
+
- task:
|
1336 |
+
type: Retrieval
|
1337 |
+
dataset:
|
1338 |
+
type: fiqa
|
1339 |
+
name: MTEB FiQA2018
|
1340 |
+
config: default
|
1341 |
+
split: test
|
1342 |
+
revision: None
|
1343 |
+
metrics:
|
1344 |
+
- type: map_at_1
|
1345 |
+
value: 21.254
|
1346 |
+
- type: map_at_10
|
1347 |
+
value: 33.723
|
1348 |
+
- type: map_at_100
|
1349 |
+
value: 35.574
|
1350 |
+
- type: map_at_1000
|
1351 |
+
value: 35.730000000000004
|
1352 |
+
- type: map_at_3
|
1353 |
+
value: 29.473
|
1354 |
+
- type: map_at_5
|
1355 |
+
value: 31.543
|
1356 |
+
- type: mrr_at_1
|
1357 |
+
value: 41.358
|
1358 |
+
- type: mrr_at_10
|
1359 |
+
value: 49.498
|
1360 |
+
- type: mrr_at_100
|
1361 |
+
value: 50.275999999999996
|
1362 |
+
- type: mrr_at_1000
|
1363 |
+
value: 50.308
|
1364 |
+
- type: mrr_at_3
|
1365 |
+
value: 47.016000000000005
|
1366 |
+
- type: mrr_at_5
|
1367 |
+
value: 48.336
|
1368 |
+
- type: ndcg_at_1
|
1369 |
+
value: 41.358
|
1370 |
+
- type: ndcg_at_10
|
1371 |
+
value: 41.579
|
1372 |
+
- type: ndcg_at_100
|
1373 |
+
value: 48.455
|
1374 |
+
- type: ndcg_at_1000
|
1375 |
+
value: 51.165000000000006
|
1376 |
+
- type: ndcg_at_3
|
1377 |
+
value: 37.681
|
1378 |
+
- type: ndcg_at_5
|
1379 |
+
value: 38.49
|
1380 |
+
- type: precision_at_1
|
1381 |
+
value: 41.358
|
1382 |
+
- type: precision_at_10
|
1383 |
+
value: 11.543000000000001
|
1384 |
+
- type: precision_at_100
|
1385 |
+
value: 1.87
|
1386 |
+
- type: precision_at_1000
|
1387 |
+
value: 0.23600000000000002
|
1388 |
+
- type: precision_at_3
|
1389 |
+
value: 24.743000000000002
|
1390 |
+
- type: precision_at_5
|
1391 |
+
value: 17.994
|
1392 |
+
- type: recall_at_1
|
1393 |
+
value: 21.254
|
1394 |
+
- type: recall_at_10
|
1395 |
+
value: 48.698
|
1396 |
+
- type: recall_at_100
|
1397 |
+
value: 74.588
|
1398 |
+
- type: recall_at_1000
|
1399 |
+
value: 91.00200000000001
|
1400 |
+
- type: recall_at_3
|
1401 |
+
value: 33.939
|
1402 |
+
- type: recall_at_5
|
1403 |
+
value: 39.367000000000004
|
1404 |
+
- task:
|
1405 |
+
type: Retrieval
|
1406 |
+
dataset:
|
1407 |
+
type: hotpotqa
|
1408 |
+
name: MTEB HotpotQA
|
1409 |
+
config: default
|
1410 |
+
split: test
|
1411 |
+
revision: None
|
1412 |
+
metrics:
|
1413 |
+
- type: map_at_1
|
1414 |
+
value: 35.922
|
1415 |
+
- type: map_at_10
|
1416 |
+
value: 52.32599999999999
|
1417 |
+
- type: map_at_100
|
1418 |
+
value: 53.18000000000001
|
1419 |
+
- type: map_at_1000
|
1420 |
+
value: 53.245
|
1421 |
+
- type: map_at_3
|
1422 |
+
value: 49.294
|
1423 |
+
- type: map_at_5
|
1424 |
+
value: 51.202999999999996
|
1425 |
+
- type: mrr_at_1
|
1426 |
+
value: 71.843
|
1427 |
+
- type: mrr_at_10
|
1428 |
+
value: 78.24600000000001
|
1429 |
+
- type: mrr_at_100
|
1430 |
+
value: 78.515
|
1431 |
+
- type: mrr_at_1000
|
1432 |
+
value: 78.527
|
1433 |
+
- type: mrr_at_3
|
1434 |
+
value: 77.17500000000001
|
1435 |
+
- type: mrr_at_5
|
1436 |
+
value: 77.852
|
1437 |
+
- type: ndcg_at_1
|
1438 |
+
value: 71.843
|
1439 |
+
- type: ndcg_at_10
|
1440 |
+
value: 61.379
|
1441 |
+
- type: ndcg_at_100
|
1442 |
+
value: 64.535
|
1443 |
+
- type: ndcg_at_1000
|
1444 |
+
value: 65.888
|
1445 |
+
- type: ndcg_at_3
|
1446 |
+
value: 56.958
|
1447 |
+
- type: ndcg_at_5
|
1448 |
+
value: 59.434
|
1449 |
+
- type: precision_at_1
|
1450 |
+
value: 71.843
|
1451 |
+
- type: precision_at_10
|
1452 |
+
value: 12.686
|
1453 |
+
- type: precision_at_100
|
1454 |
+
value: 1.517
|
1455 |
+
- type: precision_at_1000
|
1456 |
+
value: 0.16999999999999998
|
1457 |
+
- type: precision_at_3
|
1458 |
+
value: 35.778
|
1459 |
+
- type: precision_at_5
|
1460 |
+
value: 23.422
|
1461 |
+
- type: recall_at_1
|
1462 |
+
value: 35.922
|
1463 |
+
- type: recall_at_10
|
1464 |
+
value: 63.43
|
1465 |
+
- type: recall_at_100
|
1466 |
+
value: 75.868
|
1467 |
+
- type: recall_at_1000
|
1468 |
+
value: 84.88900000000001
|
1469 |
+
- type: recall_at_3
|
1470 |
+
value: 53.666000000000004
|
1471 |
+
- type: recall_at_5
|
1472 |
+
value: 58.555
|
1473 |
+
- task:
|
1474 |
+
type: Classification
|
1475 |
+
dataset:
|
1476 |
+
type: mteb/imdb
|
1477 |
+
name: MTEB ImdbClassification
|
1478 |
+
config: default
|
1479 |
+
split: test
|
1480 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1481 |
+
metrics:
|
1482 |
+
- type: accuracy
|
1483 |
+
value: 79.4408
|
1484 |
+
- type: ap
|
1485 |
+
value: 73.52820871620366
|
1486 |
+
- type: f1
|
1487 |
+
value: 79.36240238685001
|
1488 |
+
- task:
|
1489 |
+
type: Retrieval
|
1490 |
+
dataset:
|
1491 |
+
type: msmarco
|
1492 |
+
name: MTEB MSMARCO
|
1493 |
+
config: default
|
1494 |
+
split: dev
|
1495 |
+
revision: None
|
1496 |
+
metrics:
|
1497 |
+
- type: map_at_1
|
1498 |
+
value: 21.826999999999998
|
1499 |
+
- type: map_at_10
|
1500 |
+
value: 34.04
|
1501 |
+
- type: map_at_100
|
1502 |
+
value: 35.226
|
1503 |
+
- type: map_at_1000
|
1504 |
+
value: 35.275
|
1505 |
+
- type: map_at_3
|
1506 |
+
value: 30.165999999999997
|
1507 |
+
- type: map_at_5
|
1508 |
+
value: 32.318000000000005
|
1509 |
+
- type: mrr_at_1
|
1510 |
+
value: 22.464000000000002
|
1511 |
+
- type: mrr_at_10
|
1512 |
+
value: 34.631
|
1513 |
+
- type: mrr_at_100
|
1514 |
+
value: 35.752
|
1515 |
+
- type: mrr_at_1000
|
1516 |
+
value: 35.795
|
1517 |
+
- type: mrr_at_3
|
1518 |
+
value: 30.798
|
1519 |
+
- type: mrr_at_5
|
1520 |
+
value: 32.946999999999996
|
1521 |
+
- type: ndcg_at_1
|
1522 |
+
value: 22.464000000000002
|
1523 |
+
- type: ndcg_at_10
|
1524 |
+
value: 40.919
|
1525 |
+
- type: ndcg_at_100
|
1526 |
+
value: 46.632
|
1527 |
+
- type: ndcg_at_1000
|
1528 |
+
value: 47.833
|
1529 |
+
- type: ndcg_at_3
|
1530 |
+
value: 32.992
|
1531 |
+
- type: ndcg_at_5
|
1532 |
+
value: 36.834
|
1533 |
+
- type: precision_at_1
|
1534 |
+
value: 22.464000000000002
|
1535 |
+
- type: precision_at_10
|
1536 |
+
value: 6.494
|
1537 |
+
- type: precision_at_100
|
1538 |
+
value: 0.9369999999999999
|
1539 |
+
- type: precision_at_1000
|
1540 |
+
value: 0.104
|
1541 |
+
- type: precision_at_3
|
1542 |
+
value: 14.021
|
1543 |
+
- type: precision_at_5
|
1544 |
+
value: 10.347000000000001
|
1545 |
+
- type: recall_at_1
|
1546 |
+
value: 21.826999999999998
|
1547 |
+
- type: recall_at_10
|
1548 |
+
value: 62.132
|
1549 |
+
- type: recall_at_100
|
1550 |
+
value: 88.55199999999999
|
1551 |
+
- type: recall_at_1000
|
1552 |
+
value: 97.707
|
1553 |
+
- type: recall_at_3
|
1554 |
+
value: 40.541
|
1555 |
+
- type: recall_at_5
|
1556 |
+
value: 49.739
|
1557 |
+
- task:
|
1558 |
+
type: Classification
|
1559 |
+
dataset:
|
1560 |
+
type: mteb/mtop_domain
|
1561 |
+
name: MTEB MTOPDomainClassification (en)
|
1562 |
+
config: en
|
1563 |
+
split: test
|
1564 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1565 |
+
metrics:
|
1566 |
+
- type: accuracy
|
1567 |
+
value: 95.68399452804377
|
1568 |
+
- type: f1
|
1569 |
+
value: 95.25490609832268
|
1570 |
+
- task:
|
1571 |
+
type: Classification
|
1572 |
+
dataset:
|
1573 |
+
type: mteb/mtop_intent
|
1574 |
+
name: MTEB MTOPIntentClassification (en)
|
1575 |
+
config: en
|
1576 |
+
split: test
|
1577 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1578 |
+
metrics:
|
1579 |
+
- type: accuracy
|
1580 |
+
value: 83.15321477428182
|
1581 |
+
- type: f1
|
1582 |
+
value: 60.35476439087966
|
1583 |
+
- task:
|
1584 |
+
type: Classification
|
1585 |
+
dataset:
|
1586 |
+
type: mteb/amazon_massive_intent
|
1587 |
+
name: MTEB MassiveIntentClassification (en)
|
1588 |
+
config: en
|
1589 |
+
split: test
|
1590 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1591 |
+
metrics:
|
1592 |
+
- type: accuracy
|
1593 |
+
value: 71.92669804976462
|
1594 |
+
- type: f1
|
1595 |
+
value: 69.22815107207565
|
1596 |
+
- task:
|
1597 |
+
type: Classification
|
1598 |
+
dataset:
|
1599 |
+
type: mteb/amazon_massive_scenario
|
1600 |
+
name: MTEB MassiveScenarioClassification (en)
|
1601 |
+
config: en
|
1602 |
+
split: test
|
1603 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1604 |
+
metrics:
|
1605 |
+
- type: accuracy
|
1606 |
+
value: 74.4855413584398
|
1607 |
+
- type: f1
|
1608 |
+
value: 72.92107516103387
|
1609 |
+
- task:
|
1610 |
+
type: Clustering
|
1611 |
+
dataset:
|
1612 |
+
type: mteb/medrxiv-clustering-p2p
|
1613 |
+
name: MTEB MedrxivClusteringP2P
|
1614 |
+
config: default
|
1615 |
+
split: test
|
1616 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1617 |
+
metrics:
|
1618 |
+
- type: v_measure
|
1619 |
+
value: 32.412679360205544
|
1620 |
+
- task:
|
1621 |
+
type: Clustering
|
1622 |
+
dataset:
|
1623 |
+
type: mteb/medrxiv-clustering-s2s
|
1624 |
+
name: MTEB MedrxivClusteringS2S
|
1625 |
+
config: default
|
1626 |
+
split: test
|
1627 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1628 |
+
metrics:
|
1629 |
+
- type: v_measure
|
1630 |
+
value: 28.09211869875204
|
1631 |
+
- task:
|
1632 |
+
type: Reranking
|
1633 |
+
dataset:
|
1634 |
+
type: mteb/mind_small
|
1635 |
+
name: MTEB MindSmallReranking
|
1636 |
+
config: default
|
1637 |
+
split: test
|
1638 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1639 |
+
metrics:
|
1640 |
+
- type: map
|
1641 |
+
value: 30.540919056982545
|
1642 |
+
- type: mrr
|
1643 |
+
value: 31.529904607063536
|
1644 |
+
- task:
|
1645 |
+
type: Retrieval
|
1646 |
+
dataset:
|
1647 |
+
type: nfcorpus
|
1648 |
+
name: MTEB NFCorpus
|
1649 |
+
config: default
|
1650 |
+
split: test
|
1651 |
+
revision: None
|
1652 |
+
metrics:
|
1653 |
+
- type: map_at_1
|
1654 |
+
value: 5.745
|
1655 |
+
- type: map_at_10
|
1656 |
+
value: 12.013
|
1657 |
+
- type: map_at_100
|
1658 |
+
value: 15.040000000000001
|
1659 |
+
- type: map_at_1000
|
1660 |
+
value: 16.427
|
1661 |
+
- type: map_at_3
|
1662 |
+
value: 8.841000000000001
|
1663 |
+
- type: map_at_5
|
1664 |
+
value: 10.289
|
1665 |
+
- type: mrr_at_1
|
1666 |
+
value: 45.201
|
1667 |
+
- type: mrr_at_10
|
1668 |
+
value: 53.483999999999995
|
1669 |
+
- type: mrr_at_100
|
1670 |
+
value: 54.20700000000001
|
1671 |
+
- type: mrr_at_1000
|
1672 |
+
value: 54.252
|
1673 |
+
- type: mrr_at_3
|
1674 |
+
value: 51.29
|
1675 |
+
- type: mrr_at_5
|
1676 |
+
value: 52.73
|
1677 |
+
- type: ndcg_at_1
|
1678 |
+
value: 43.808
|
1679 |
+
- type: ndcg_at_10
|
1680 |
+
value: 32.445
|
1681 |
+
- type: ndcg_at_100
|
1682 |
+
value: 30.031000000000002
|
1683 |
+
- type: ndcg_at_1000
|
1684 |
+
value: 39.007
|
1685 |
+
- type: ndcg_at_3
|
1686 |
+
value: 37.204
|
1687 |
+
- type: ndcg_at_5
|
1688 |
+
value: 35.07
|
1689 |
+
- type: precision_at_1
|
1690 |
+
value: 45.201
|
1691 |
+
- type: precision_at_10
|
1692 |
+
value: 23.684
|
1693 |
+
- type: precision_at_100
|
1694 |
+
value: 7.600999999999999
|
1695 |
+
- type: precision_at_1000
|
1696 |
+
value: 2.043
|
1697 |
+
- type: precision_at_3
|
1698 |
+
value: 33.953
|
1699 |
+
- type: precision_at_5
|
1700 |
+
value: 29.412
|
1701 |
+
- type: recall_at_1
|
1702 |
+
value: 5.745
|
1703 |
+
- type: recall_at_10
|
1704 |
+
value: 16.168
|
1705 |
+
- type: recall_at_100
|
1706 |
+
value: 30.875999999999998
|
1707 |
+
- type: recall_at_1000
|
1708 |
+
value: 62.686
|
1709 |
+
- type: recall_at_3
|
1710 |
+
value: 9.75
|
1711 |
+
- type: recall_at_5
|
1712 |
+
value: 12.413
|
1713 |
+
- task:
|
1714 |
+
type: Retrieval
|
1715 |
+
dataset:
|
1716 |
+
type: nq
|
1717 |
+
name: MTEB NQ
|
1718 |
+
config: default
|
1719 |
+
split: test
|
1720 |
+
revision: None
|
1721 |
+
metrics:
|
1722 |
+
- type: map_at_1
|
1723 |
+
value: 37.828
|
1724 |
+
- type: map_at_10
|
1725 |
+
value: 53.239000000000004
|
1726 |
+
- type: map_at_100
|
1727 |
+
value: 54.035999999999994
|
1728 |
+
- type: map_at_1000
|
1729 |
+
value: 54.067
|
1730 |
+
- type: map_at_3
|
1731 |
+
value: 49.289
|
1732 |
+
- type: map_at_5
|
1733 |
+
value: 51.784
|
1734 |
+
- type: mrr_at_1
|
1735 |
+
value: 42.497
|
1736 |
+
- type: mrr_at_10
|
1737 |
+
value: 55.916999999999994
|
1738 |
+
- type: mrr_at_100
|
1739 |
+
value: 56.495
|
1740 |
+
- type: mrr_at_1000
|
1741 |
+
value: 56.516999999999996
|
1742 |
+
- type: mrr_at_3
|
1743 |
+
value: 52.800000000000004
|
1744 |
+
- type: mrr_at_5
|
1745 |
+
value: 54.722
|
1746 |
+
- type: ndcg_at_1
|
1747 |
+
value: 42.468
|
1748 |
+
- type: ndcg_at_10
|
1749 |
+
value: 60.437
|
1750 |
+
- type: ndcg_at_100
|
1751 |
+
value: 63.731
|
1752 |
+
- type: ndcg_at_1000
|
1753 |
+
value: 64.41799999999999
|
1754 |
+
- type: ndcg_at_3
|
1755 |
+
value: 53.230999999999995
|
1756 |
+
- type: ndcg_at_5
|
1757 |
+
value: 57.26
|
1758 |
+
- type: precision_at_1
|
1759 |
+
value: 42.468
|
1760 |
+
- type: precision_at_10
|
1761 |
+
value: 9.47
|
1762 |
+
- type: precision_at_100
|
1763 |
+
value: 1.1360000000000001
|
1764 |
+
- type: precision_at_1000
|
1765 |
+
value: 0.12
|
1766 |
+
- type: precision_at_3
|
1767 |
+
value: 23.724999999999998
|
1768 |
+
- type: precision_at_5
|
1769 |
+
value: 16.593
|
1770 |
+
- type: recall_at_1
|
1771 |
+
value: 37.828
|
1772 |
+
- type: recall_at_10
|
1773 |
+
value: 79.538
|
1774 |
+
- type: recall_at_100
|
1775 |
+
value: 93.646
|
1776 |
+
- type: recall_at_1000
|
1777 |
+
value: 98.72999999999999
|
1778 |
+
- type: recall_at_3
|
1779 |
+
value: 61.134
|
1780 |
+
- type: recall_at_5
|
1781 |
+
value: 70.377
|
1782 |
+
- task:
|
1783 |
+
type: Retrieval
|
1784 |
+
dataset:
|
1785 |
+
type: quora
|
1786 |
+
name: MTEB QuoraRetrieval
|
1787 |
+
config: default
|
1788 |
+
split: test
|
1789 |
+
revision: None
|
1790 |
+
metrics:
|
1791 |
+
- type: map_at_1
|
1792 |
+
value: 70.548
|
1793 |
+
- type: map_at_10
|
1794 |
+
value: 84.466
|
1795 |
+
- type: map_at_100
|
1796 |
+
value: 85.10600000000001
|
1797 |
+
- type: map_at_1000
|
1798 |
+
value: 85.123
|
1799 |
+
- type: map_at_3
|
1800 |
+
value: 81.57600000000001
|
1801 |
+
- type: map_at_5
|
1802 |
+
value: 83.399
|
1803 |
+
- type: mrr_at_1
|
1804 |
+
value: 81.24
|
1805 |
+
- type: mrr_at_10
|
1806 |
+
value: 87.457
|
1807 |
+
- type: mrr_at_100
|
1808 |
+
value: 87.574
|
1809 |
+
- type: mrr_at_1000
|
1810 |
+
value: 87.575
|
1811 |
+
- type: mrr_at_3
|
1812 |
+
value: 86.507
|
1813 |
+
- type: mrr_at_5
|
1814 |
+
value: 87.205
|
1815 |
+
- type: ndcg_at_1
|
1816 |
+
value: 81.25
|
1817 |
+
- type: ndcg_at_10
|
1818 |
+
value: 88.203
|
1819 |
+
- type: ndcg_at_100
|
1820 |
+
value: 89.457
|
1821 |
+
- type: ndcg_at_1000
|
1822 |
+
value: 89.563
|
1823 |
+
- type: ndcg_at_3
|
1824 |
+
value: 85.465
|
1825 |
+
- type: ndcg_at_5
|
1826 |
+
value: 87.007
|
1827 |
+
- type: precision_at_1
|
1828 |
+
value: 81.25
|
1829 |
+
- type: precision_at_10
|
1830 |
+
value: 13.373
|
1831 |
+
- type: precision_at_100
|
1832 |
+
value: 1.5270000000000001
|
1833 |
+
- type: precision_at_1000
|
1834 |
+
value: 0.157
|
1835 |
+
- type: precision_at_3
|
1836 |
+
value: 37.417
|
1837 |
+
- type: precision_at_5
|
1838 |
+
value: 24.556
|
1839 |
+
- type: recall_at_1
|
1840 |
+
value: 70.548
|
1841 |
+
- type: recall_at_10
|
1842 |
+
value: 95.208
|
1843 |
+
- type: recall_at_100
|
1844 |
+
value: 99.514
|
1845 |
+
- type: recall_at_1000
|
1846 |
+
value: 99.988
|
1847 |
+
- type: recall_at_3
|
1848 |
+
value: 87.214
|
1849 |
+
- type: recall_at_5
|
1850 |
+
value: 91.696
|
1851 |
+
- task:
|
1852 |
+
type: Clustering
|
1853 |
+
dataset:
|
1854 |
+
type: mteb/reddit-clustering
|
1855 |
+
name: MTEB RedditClustering
|
1856 |
+
config: default
|
1857 |
+
split: test
|
1858 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1859 |
+
metrics:
|
1860 |
+
- type: v_measure
|
1861 |
+
value: 53.04822095496839
|
1862 |
+
- task:
|
1863 |
+
type: Clustering
|
1864 |
+
dataset:
|
1865 |
+
type: mteb/reddit-clustering-p2p
|
1866 |
+
name: MTEB RedditClusteringP2P
|
1867 |
+
config: default
|
1868 |
+
split: test
|
1869 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1870 |
+
metrics:
|
1871 |
+
- type: v_measure
|
1872 |
+
value: 60.30778476474675
|
1873 |
+
- task:
|
1874 |
+
type: Retrieval
|
1875 |
+
dataset:
|
1876 |
+
type: scidocs
|
1877 |
+
name: MTEB SCIDOCS
|
1878 |
+
config: default
|
1879 |
+
split: test
|
1880 |
+
revision: None
|
1881 |
+
metrics:
|
1882 |
+
- type: map_at_1
|
1883 |
+
value: 4.692
|
1884 |
+
- type: map_at_10
|
1885 |
+
value: 11.766
|
1886 |
+
- type: map_at_100
|
1887 |
+
value: 13.904
|
1888 |
+
- type: map_at_1000
|
1889 |
+
value: 14.216999999999999
|
1890 |
+
- type: map_at_3
|
1891 |
+
value: 8.245
|
1892 |
+
- type: map_at_5
|
1893 |
+
value: 9.92
|
1894 |
+
- type: mrr_at_1
|
1895 |
+
value: 23.0
|
1896 |
+
- type: mrr_at_10
|
1897 |
+
value: 33.78
|
1898 |
+
- type: mrr_at_100
|
1899 |
+
value: 34.922
|
1900 |
+
- type: mrr_at_1000
|
1901 |
+
value: 34.973
|
1902 |
+
- type: mrr_at_3
|
1903 |
+
value: 30.2
|
1904 |
+
- type: mrr_at_5
|
1905 |
+
value: 32.565
|
1906 |
+
- type: ndcg_at_1
|
1907 |
+
value: 23.0
|
1908 |
+
- type: ndcg_at_10
|
1909 |
+
value: 19.863
|
1910 |
+
- type: ndcg_at_100
|
1911 |
+
value: 28.141
|
1912 |
+
- type: ndcg_at_1000
|
1913 |
+
value: 33.549
|
1914 |
+
- type: ndcg_at_3
|
1915 |
+
value: 18.434
|
1916 |
+
- type: ndcg_at_5
|
1917 |
+
value: 16.384
|
1918 |
+
- type: precision_at_1
|
1919 |
+
value: 23.0
|
1920 |
+
- type: precision_at_10
|
1921 |
+
value: 10.39
|
1922 |
+
- type: precision_at_100
|
1923 |
+
value: 2.235
|
1924 |
+
- type: precision_at_1000
|
1925 |
+
value: 0.35300000000000004
|
1926 |
+
- type: precision_at_3
|
1927 |
+
value: 17.133000000000003
|
1928 |
+
- type: precision_at_5
|
1929 |
+
value: 14.44
|
1930 |
+
- type: recall_at_1
|
1931 |
+
value: 4.692
|
1932 |
+
- type: recall_at_10
|
1933 |
+
value: 21.025
|
1934 |
+
- type: recall_at_100
|
1935 |
+
value: 45.324999999999996
|
1936 |
+
- type: recall_at_1000
|
1937 |
+
value: 71.675
|
1938 |
+
- type: recall_at_3
|
1939 |
+
value: 10.440000000000001
|
1940 |
+
- type: recall_at_5
|
1941 |
+
value: 14.64
|
1942 |
+
- task:
|
1943 |
+
type: STS
|
1944 |
+
dataset:
|
1945 |
+
type: mteb/sickr-sts
|
1946 |
+
name: MTEB SICK-R
|
1947 |
+
config: default
|
1948 |
+
split: test
|
1949 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1950 |
+
metrics:
|
1951 |
+
- type: cos_sim_pearson
|
1952 |
+
value: 84.96178184892842
|
1953 |
+
- type: cos_sim_spearman
|
1954 |
+
value: 79.6487740813199
|
1955 |
+
- type: euclidean_pearson
|
1956 |
+
value: 82.06661161625023
|
1957 |
+
- type: euclidean_spearman
|
1958 |
+
value: 79.64876769031183
|
1959 |
+
- type: manhattan_pearson
|
1960 |
+
value: 82.07061164575131
|
1961 |
+
- type: manhattan_spearman
|
1962 |
+
value: 79.65197039464537
|
1963 |
+
- task:
|
1964 |
+
type: STS
|
1965 |
+
dataset:
|
1966 |
+
type: mteb/sts12-sts
|
1967 |
+
name: MTEB STS12
|
1968 |
+
config: default
|
1969 |
+
split: test
|
1970 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1971 |
+
metrics:
|
1972 |
+
- type: cos_sim_pearson
|
1973 |
+
value: 84.15305604100027
|
1974 |
+
- type: cos_sim_spearman
|
1975 |
+
value: 74.27447427941591
|
1976 |
+
- type: euclidean_pearson
|
1977 |
+
value: 80.52737337565307
|
1978 |
+
- type: euclidean_spearman
|
1979 |
+
value: 74.27416077132192
|
1980 |
+
- type: manhattan_pearson
|
1981 |
+
value: 80.53728571140387
|
1982 |
+
- type: manhattan_spearman
|
1983 |
+
value: 74.28853605753457
|
1984 |
+
- task:
|
1985 |
+
type: STS
|
1986 |
+
dataset:
|
1987 |
+
type: mteb/sts13-sts
|
1988 |
+
name: MTEB STS13
|
1989 |
+
config: default
|
1990 |
+
split: test
|
1991 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1992 |
+
metrics:
|
1993 |
+
- type: cos_sim_pearson
|
1994 |
+
value: 83.44386080639279
|
1995 |
+
- type: cos_sim_spearman
|
1996 |
+
value: 84.17947648159536
|
1997 |
+
- type: euclidean_pearson
|
1998 |
+
value: 83.34145388129387
|
1999 |
+
- type: euclidean_spearman
|
2000 |
+
value: 84.17947648159536
|
2001 |
+
- type: manhattan_pearson
|
2002 |
+
value: 83.30699061927966
|
2003 |
+
- type: manhattan_spearman
|
2004 |
+
value: 84.18125737380451
|
2005 |
+
- task:
|
2006 |
+
type: STS
|
2007 |
+
dataset:
|
2008 |
+
type: mteb/sts14-sts
|
2009 |
+
name: MTEB STS14
|
2010 |
+
config: default
|
2011 |
+
split: test
|
2012 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2013 |
+
metrics:
|
2014 |
+
- type: cos_sim_pearson
|
2015 |
+
value: 81.57392220985612
|
2016 |
+
- type: cos_sim_spearman
|
2017 |
+
value: 78.80745014464101
|
2018 |
+
- type: euclidean_pearson
|
2019 |
+
value: 80.01660371487199
|
2020 |
+
- type: euclidean_spearman
|
2021 |
+
value: 78.80741240102256
|
2022 |
+
- type: manhattan_pearson
|
2023 |
+
value: 79.96810779507953
|
2024 |
+
- type: manhattan_spearman
|
2025 |
+
value: 78.75600400119448
|
2026 |
+
- task:
|
2027 |
+
type: STS
|
2028 |
+
dataset:
|
2029 |
+
type: mteb/sts15-sts
|
2030 |
+
name: MTEB STS15
|
2031 |
+
config: default
|
2032 |
+
split: test
|
2033 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2034 |
+
metrics:
|
2035 |
+
- type: cos_sim_pearson
|
2036 |
+
value: 86.85421063026625
|
2037 |
+
- type: cos_sim_spearman
|
2038 |
+
value: 87.55320285299192
|
2039 |
+
- type: euclidean_pearson
|
2040 |
+
value: 86.69750143323517
|
2041 |
+
- type: euclidean_spearman
|
2042 |
+
value: 87.55320284326378
|
2043 |
+
- type: manhattan_pearson
|
2044 |
+
value: 86.63379169960379
|
2045 |
+
- type: manhattan_spearman
|
2046 |
+
value: 87.4815029877984
|
2047 |
+
- task:
|
2048 |
+
type: STS
|
2049 |
+
dataset:
|
2050 |
+
type: mteb/sts16-sts
|
2051 |
+
name: MTEB STS16
|
2052 |
+
config: default
|
2053 |
+
split: test
|
2054 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2055 |
+
metrics:
|
2056 |
+
- type: cos_sim_pearson
|
2057 |
+
value: 84.31314130411842
|
2058 |
+
- type: cos_sim_spearman
|
2059 |
+
value: 85.3489588181433
|
2060 |
+
- type: euclidean_pearson
|
2061 |
+
value: 84.13240933463535
|
2062 |
+
- type: euclidean_spearman
|
2063 |
+
value: 85.34902871403281
|
2064 |
+
- type: manhattan_pearson
|
2065 |
+
value: 84.01183086503559
|
2066 |
+
- type: manhattan_spearman
|
2067 |
+
value: 85.19316703166102
|
2068 |
+
- task:
|
2069 |
+
type: STS
|
2070 |
+
dataset:
|
2071 |
+
type: mteb/sts17-crosslingual-sts
|
2072 |
+
name: MTEB STS17 (en-en)
|
2073 |
+
config: en-en
|
2074 |
+
split: test
|
2075 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2076 |
+
metrics:
|
2077 |
+
- type: cos_sim_pearson
|
2078 |
+
value: 89.09979781689536
|
2079 |
+
- type: cos_sim_spearman
|
2080 |
+
value: 88.87813323759015
|
2081 |
+
- type: euclidean_pearson
|
2082 |
+
value: 88.65413031123792
|
2083 |
+
- type: euclidean_spearman
|
2084 |
+
value: 88.87813323759015
|
2085 |
+
- type: manhattan_pearson
|
2086 |
+
value: 88.61818758256024
|
2087 |
+
- type: manhattan_spearman
|
2088 |
+
value: 88.81044100494604
|
2089 |
+
- task:
|
2090 |
+
type: STS
|
2091 |
+
dataset:
|
2092 |
+
type: mteb/sts22-crosslingual-sts
|
2093 |
+
name: MTEB STS22 (en)
|
2094 |
+
config: en
|
2095 |
+
split: test
|
2096 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2097 |
+
metrics:
|
2098 |
+
- type: cos_sim_pearson
|
2099 |
+
value: 62.30693258111531
|
2100 |
+
- type: cos_sim_spearman
|
2101 |
+
value: 62.195516523251946
|
2102 |
+
- type: euclidean_pearson
|
2103 |
+
value: 62.951283701049476
|
2104 |
+
- type: euclidean_spearman
|
2105 |
+
value: 62.195516523251946
|
2106 |
+
- type: manhattan_pearson
|
2107 |
+
value: 63.068322281439535
|
2108 |
+
- type: manhattan_spearman
|
2109 |
+
value: 62.10621171028406
|
2110 |
+
- task:
|
2111 |
+
type: STS
|
2112 |
+
dataset:
|
2113 |
+
type: mteb/stsbenchmark-sts
|
2114 |
+
name: MTEB STSBenchmark
|
2115 |
+
config: default
|
2116 |
+
split: test
|
2117 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2118 |
+
metrics:
|
2119 |
+
- type: cos_sim_pearson
|
2120 |
+
value: 84.27092833763909
|
2121 |
+
- type: cos_sim_spearman
|
2122 |
+
value: 84.84429717949759
|
2123 |
+
- type: euclidean_pearson
|
2124 |
+
value: 84.8516966060792
|
2125 |
+
- type: euclidean_spearman
|
2126 |
+
value: 84.84429717949759
|
2127 |
+
- type: manhattan_pearson
|
2128 |
+
value: 84.82203139242881
|
2129 |
+
- type: manhattan_spearman
|
2130 |
+
value: 84.8358503952945
|
2131 |
+
- task:
|
2132 |
+
type: Reranking
|
2133 |
+
dataset:
|
2134 |
+
type: mteb/scidocs-reranking
|
2135 |
+
name: MTEB SciDocsRR
|
2136 |
+
config: default
|
2137 |
+
split: test
|
2138 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2139 |
+
metrics:
|
2140 |
+
- type: map
|
2141 |
+
value: 83.10290863981409
|
2142 |
+
- type: mrr
|
2143 |
+
value: 95.31168450286097
|
2144 |
+
- task:
|
2145 |
+
type: Retrieval
|
2146 |
+
dataset:
|
2147 |
+
type: scifact
|
2148 |
+
name: MTEB SciFact
|
2149 |
+
config: default
|
2150 |
+
split: test
|
2151 |
+
revision: None
|
2152 |
+
metrics:
|
2153 |
+
- type: map_at_1
|
2154 |
+
value: 52.161
|
2155 |
+
- type: map_at_10
|
2156 |
+
value: 62.138000000000005
|
2157 |
+
- type: map_at_100
|
2158 |
+
value: 62.769
|
2159 |
+
- type: map_at_1000
|
2160 |
+
value: 62.812
|
2161 |
+
- type: map_at_3
|
2162 |
+
value: 59.111000000000004
|
2163 |
+
- type: map_at_5
|
2164 |
+
value: 60.995999999999995
|
2165 |
+
- type: mrr_at_1
|
2166 |
+
value: 55.333
|
2167 |
+
- type: mrr_at_10
|
2168 |
+
value: 63.504000000000005
|
2169 |
+
- type: mrr_at_100
|
2170 |
+
value: 64.036
|
2171 |
+
- type: mrr_at_1000
|
2172 |
+
value: 64.08
|
2173 |
+
- type: mrr_at_3
|
2174 |
+
value: 61.278
|
2175 |
+
- type: mrr_at_5
|
2176 |
+
value: 62.778
|
2177 |
+
- type: ndcg_at_1
|
2178 |
+
value: 55.333
|
2179 |
+
- type: ndcg_at_10
|
2180 |
+
value: 66.678
|
2181 |
+
- type: ndcg_at_100
|
2182 |
+
value: 69.415
|
2183 |
+
- type: ndcg_at_1000
|
2184 |
+
value: 70.453
|
2185 |
+
- type: ndcg_at_3
|
2186 |
+
value: 61.755
|
2187 |
+
- type: ndcg_at_5
|
2188 |
+
value: 64.546
|
2189 |
+
- type: precision_at_1
|
2190 |
+
value: 55.333
|
2191 |
+
- type: precision_at_10
|
2192 |
+
value: 9.033
|
2193 |
+
- type: precision_at_100
|
2194 |
+
value: 1.043
|
2195 |
+
- type: precision_at_1000
|
2196 |
+
value: 0.11199999999999999
|
2197 |
+
- type: precision_at_3
|
2198 |
+
value: 24.221999999999998
|
2199 |
+
- type: precision_at_5
|
2200 |
+
value: 16.333000000000002
|
2201 |
+
- type: recall_at_1
|
2202 |
+
value: 52.161
|
2203 |
+
- type: recall_at_10
|
2204 |
+
value: 79.156
|
2205 |
+
- type: recall_at_100
|
2206 |
+
value: 91.333
|
2207 |
+
- type: recall_at_1000
|
2208 |
+
value: 99.333
|
2209 |
+
- type: recall_at_3
|
2210 |
+
value: 66.43299999999999
|
2211 |
+
- type: recall_at_5
|
2212 |
+
value: 73.272
|
2213 |
+
- task:
|
2214 |
+
type: PairClassification
|
2215 |
+
dataset:
|
2216 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2217 |
+
name: MTEB SprintDuplicateQuestions
|
2218 |
+
config: default
|
2219 |
+
split: test
|
2220 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2221 |
+
metrics:
|
2222 |
+
- type: cos_sim_accuracy
|
2223 |
+
value: 99.81287128712871
|
2224 |
+
- type: cos_sim_ap
|
2225 |
+
value: 95.30034785910676
|
2226 |
+
- type: cos_sim_f1
|
2227 |
+
value: 90.28629856850716
|
2228 |
+
- type: cos_sim_precision
|
2229 |
+
value: 92.36401673640168
|
2230 |
+
- type: cos_sim_recall
|
2231 |
+
value: 88.3
|
2232 |
+
- type: dot_accuracy
|
2233 |
+
value: 99.81287128712871
|
2234 |
+
- type: dot_ap
|
2235 |
+
value: 95.30034785910676
|
2236 |
+
- type: dot_f1
|
2237 |
+
value: 90.28629856850716
|
2238 |
+
- type: dot_precision
|
2239 |
+
value: 92.36401673640168
|
2240 |
+
- type: dot_recall
|
2241 |
+
value: 88.3
|
2242 |
+
- type: euclidean_accuracy
|
2243 |
+
value: 99.81287128712871
|
2244 |
+
- type: euclidean_ap
|
2245 |
+
value: 95.30034785910676
|
2246 |
+
- type: euclidean_f1
|
2247 |
+
value: 90.28629856850716
|
2248 |
+
- type: euclidean_precision
|
2249 |
+
value: 92.36401673640168
|
2250 |
+
- type: euclidean_recall
|
2251 |
+
value: 88.3
|
2252 |
+
- type: manhattan_accuracy
|
2253 |
+
value: 99.80990099009901
|
2254 |
+
- type: manhattan_ap
|
2255 |
+
value: 95.26880751950654
|
2256 |
+
- type: manhattan_f1
|
2257 |
+
value: 90.22177419354838
|
2258 |
+
- type: manhattan_precision
|
2259 |
+
value: 90.95528455284553
|
2260 |
+
- type: manhattan_recall
|
2261 |
+
value: 89.5
|
2262 |
+
- type: max_accuracy
|
2263 |
+
value: 99.81287128712871
|
2264 |
+
- type: max_ap
|
2265 |
+
value: 95.30034785910676
|
2266 |
+
- type: max_f1
|
2267 |
+
value: 90.28629856850716
|
2268 |
+
- task:
|
2269 |
+
type: Clustering
|
2270 |
+
dataset:
|
2271 |
+
type: mteb/stackexchange-clustering
|
2272 |
+
name: MTEB StackExchangeClustering
|
2273 |
+
config: default
|
2274 |
+
split: test
|
2275 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2276 |
+
metrics:
|
2277 |
+
- type: v_measure
|
2278 |
+
value: 58.518662504351184
|
2279 |
+
- task:
|
2280 |
+
type: Clustering
|
2281 |
+
dataset:
|
2282 |
+
type: mteb/stackexchange-clustering-p2p
|
2283 |
+
name: MTEB StackExchangeClusteringP2P
|
2284 |
+
config: default
|
2285 |
+
split: test
|
2286 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2287 |
+
metrics:
|
2288 |
+
- type: v_measure
|
2289 |
+
value: 34.96168178378587
|
2290 |
+
- task:
|
2291 |
+
type: Reranking
|
2292 |
+
dataset:
|
2293 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2294 |
+
name: MTEB StackOverflowDupQuestions
|
2295 |
+
config: default
|
2296 |
+
split: test
|
2297 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2298 |
+
metrics:
|
2299 |
+
- type: map
|
2300 |
+
value: 52.04862593471896
|
2301 |
+
- type: mrr
|
2302 |
+
value: 52.97238402936932
|
2303 |
+
- task:
|
2304 |
+
type: Summarization
|
2305 |
+
dataset:
|
2306 |
+
type: mteb/summeval
|
2307 |
+
name: MTEB SummEval
|
2308 |
+
config: default
|
2309 |
+
split: test
|
2310 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2311 |
+
metrics:
|
2312 |
+
- type: cos_sim_pearson
|
2313 |
+
value: 30.092545236479946
|
2314 |
+
- type: cos_sim_spearman
|
2315 |
+
value: 31.599851000175498
|
2316 |
+
- type: dot_pearson
|
2317 |
+
value: 30.092542723901676
|
2318 |
+
- type: dot_spearman
|
2319 |
+
value: 31.599851000175498
|
2320 |
+
- task:
|
2321 |
+
type: Retrieval
|
2322 |
+
dataset:
|
2323 |
+
type: trec-covid
|
2324 |
+
name: MTEB TRECCOVID
|
2325 |
+
config: default
|
2326 |
+
split: test
|
2327 |
+
revision: None
|
2328 |
+
metrics:
|
2329 |
+
- type: map_at_1
|
2330 |
+
value: 0.189
|
2331 |
+
- type: map_at_10
|
2332 |
+
value: 1.662
|
2333 |
+
- type: map_at_100
|
2334 |
+
value: 9.384
|
2335 |
+
- type: map_at_1000
|
2336 |
+
value: 22.669
|
2337 |
+
- type: map_at_3
|
2338 |
+
value: 0.5559999999999999
|
2339 |
+
- type: map_at_5
|
2340 |
+
value: 0.9039999999999999
|
2341 |
+
- type: mrr_at_1
|
2342 |
+
value: 68.0
|
2343 |
+
- type: mrr_at_10
|
2344 |
+
value: 81.01899999999999
|
2345 |
+
- type: mrr_at_100
|
2346 |
+
value: 81.01899999999999
|
2347 |
+
- type: mrr_at_1000
|
2348 |
+
value: 81.01899999999999
|
2349 |
+
- type: mrr_at_3
|
2350 |
+
value: 79.333
|
2351 |
+
- type: mrr_at_5
|
2352 |
+
value: 80.733
|
2353 |
+
- type: ndcg_at_1
|
2354 |
+
value: 63.0
|
2355 |
+
- type: ndcg_at_10
|
2356 |
+
value: 65.913
|
2357 |
+
- type: ndcg_at_100
|
2358 |
+
value: 51.895
|
2359 |
+
- type: ndcg_at_1000
|
2360 |
+
value: 46.967
|
2361 |
+
- type: ndcg_at_3
|
2362 |
+
value: 65.49199999999999
|
2363 |
+
- type: ndcg_at_5
|
2364 |
+
value: 66.69699999999999
|
2365 |
+
- type: precision_at_1
|
2366 |
+
value: 68.0
|
2367 |
+
- type: precision_at_10
|
2368 |
+
value: 71.6
|
2369 |
+
- type: precision_at_100
|
2370 |
+
value: 53.66
|
2371 |
+
- type: precision_at_1000
|
2372 |
+
value: 21.124000000000002
|
2373 |
+
- type: precision_at_3
|
2374 |
+
value: 72.667
|
2375 |
+
- type: precision_at_5
|
2376 |
+
value: 74.0
|
2377 |
+
- type: recall_at_1
|
2378 |
+
value: 0.189
|
2379 |
+
- type: recall_at_10
|
2380 |
+
value: 1.913
|
2381 |
+
- type: recall_at_100
|
2382 |
+
value: 12.601999999999999
|
2383 |
+
- type: recall_at_1000
|
2384 |
+
value: 44.296
|
2385 |
+
- type: recall_at_3
|
2386 |
+
value: 0.605
|
2387 |
+
- type: recall_at_5
|
2388 |
+
value: 1.018
|
2389 |
+
- task:
|
2390 |
+
type: Retrieval
|
2391 |
+
dataset:
|
2392 |
+
type: webis-touche2020
|
2393 |
+
name: MTEB Touche2020
|
2394 |
+
config: default
|
2395 |
+
split: test
|
2396 |
+
revision: None
|
2397 |
+
metrics:
|
2398 |
+
- type: map_at_1
|
2399 |
+
value: 2.701
|
2400 |
+
- type: map_at_10
|
2401 |
+
value: 10.445
|
2402 |
+
- type: map_at_100
|
2403 |
+
value: 17.324
|
2404 |
+
- type: map_at_1000
|
2405 |
+
value: 19.161
|
2406 |
+
- type: map_at_3
|
2407 |
+
value: 5.497
|
2408 |
+
- type: map_at_5
|
2409 |
+
value: 7.278
|
2410 |
+
- type: mrr_at_1
|
2411 |
+
value: 30.612000000000002
|
2412 |
+
- type: mrr_at_10
|
2413 |
+
value: 45.534
|
2414 |
+
- type: mrr_at_100
|
2415 |
+
value: 45.792
|
2416 |
+
- type: mrr_at_1000
|
2417 |
+
value: 45.806999999999995
|
2418 |
+
- type: mrr_at_3
|
2419 |
+
value: 37.755
|
2420 |
+
- type: mrr_at_5
|
2421 |
+
value: 43.469
|
2422 |
+
- type: ndcg_at_1
|
2423 |
+
value: 26.531
|
2424 |
+
- type: ndcg_at_10
|
2425 |
+
value: 26.235000000000003
|
2426 |
+
- type: ndcg_at_100
|
2427 |
+
value: 39.17
|
2428 |
+
- type: ndcg_at_1000
|
2429 |
+
value: 51.038
|
2430 |
+
- type: ndcg_at_3
|
2431 |
+
value: 23.625
|
2432 |
+
- type: ndcg_at_5
|
2433 |
+
value: 24.338
|
2434 |
+
- type: precision_at_1
|
2435 |
+
value: 30.612000000000002
|
2436 |
+
- type: precision_at_10
|
2437 |
+
value: 24.285999999999998
|
2438 |
+
- type: precision_at_100
|
2439 |
+
value: 8.224
|
2440 |
+
- type: precision_at_1000
|
2441 |
+
value: 1.6179999999999999
|
2442 |
+
- type: precision_at_3
|
2443 |
+
value: 24.490000000000002
|
2444 |
+
- type: precision_at_5
|
2445 |
+
value: 24.898
|
2446 |
+
- type: recall_at_1
|
2447 |
+
value: 2.701
|
2448 |
+
- type: recall_at_10
|
2449 |
+
value: 17.997
|
2450 |
+
- type: recall_at_100
|
2451 |
+
value: 51.766999999999996
|
2452 |
+
- type: recall_at_1000
|
2453 |
+
value: 87.863
|
2454 |
+
- type: recall_at_3
|
2455 |
+
value: 6.295000000000001
|
2456 |
+
- type: recall_at_5
|
2457 |
+
value: 9.993
|
2458 |
+
- task:
|
2459 |
+
type: Classification
|
2460 |
+
dataset:
|
2461 |
+
type: mteb/toxic_conversations_50k
|
2462 |
+
name: MTEB ToxicConversationsClassification
|
2463 |
+
config: default
|
2464 |
+
split: test
|
2465 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2466 |
+
metrics:
|
2467 |
+
- type: accuracy
|
2468 |
+
value: 73.3474
|
2469 |
+
- type: ap
|
2470 |
+
value: 15.393431414459924
|
2471 |
+
- type: f1
|
2472 |
+
value: 56.466681887882416
|
2473 |
+
- task:
|
2474 |
+
type: Classification
|
2475 |
+
dataset:
|
2476 |
+
type: mteb/tweet_sentiment_extraction
|
2477 |
+
name: MTEB TweetSentimentExtractionClassification
|
2478 |
+
config: default
|
2479 |
+
split: test
|
2480 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2481 |
+
metrics:
|
2482 |
+
- type: accuracy
|
2483 |
+
value: 62.062818336163
|
2484 |
+
- type: f1
|
2485 |
+
value: 62.11230840463252
|
2486 |
+
- task:
|
2487 |
+
type: Clustering
|
2488 |
+
dataset:
|
2489 |
+
type: mteb/twentynewsgroups-clustering
|
2490 |
+
name: MTEB TwentyNewsgroupsClustering
|
2491 |
+
config: default
|
2492 |
+
split: test
|
2493 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2494 |
+
metrics:
|
2495 |
+
- type: v_measure
|
2496 |
+
value: 42.464892820845115
|
2497 |
+
- task:
|
2498 |
+
type: PairClassification
|
2499 |
+
dataset:
|
2500 |
+
type: mteb/twittersemeval2015-pairclassification
|
2501 |
+
name: MTEB TwitterSemEval2015
|
2502 |
+
config: default
|
2503 |
+
split: test
|
2504 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2505 |
+
metrics:
|
2506 |
+
- type: cos_sim_accuracy
|
2507 |
+
value: 86.15962329379508
|
2508 |
+
- type: cos_sim_ap
|
2509 |
+
value: 74.73674057919256
|
2510 |
+
- type: cos_sim_f1
|
2511 |
+
value: 68.81245642574947
|
2512 |
+
- type: cos_sim_precision
|
2513 |
+
value: 61.48255813953488
|
2514 |
+
- type: cos_sim_recall
|
2515 |
+
value: 78.12664907651715
|
2516 |
+
- type: dot_accuracy
|
2517 |
+
value: 86.15962329379508
|
2518 |
+
- type: dot_ap
|
2519 |
+
value: 74.7367634988281
|
2520 |
+
- type: dot_f1
|
2521 |
+
value: 68.81245642574947
|
2522 |
+
- type: dot_precision
|
2523 |
+
value: 61.48255813953488
|
2524 |
+
- type: dot_recall
|
2525 |
+
value: 78.12664907651715
|
2526 |
+
- type: euclidean_accuracy
|
2527 |
+
value: 86.15962329379508
|
2528 |
+
- type: euclidean_ap
|
2529 |
+
value: 74.7367761466634
|
2530 |
+
- type: euclidean_f1
|
2531 |
+
value: 68.81245642574947
|
2532 |
+
- type: euclidean_precision
|
2533 |
+
value: 61.48255813953488
|
2534 |
+
- type: euclidean_recall
|
2535 |
+
value: 78.12664907651715
|
2536 |
+
- type: manhattan_accuracy
|
2537 |
+
value: 86.21326816474935
|
2538 |
+
- type: manhattan_ap
|
2539 |
+
value: 74.64416473733951
|
2540 |
+
- type: manhattan_f1
|
2541 |
+
value: 68.80924855491331
|
2542 |
+
- type: manhattan_precision
|
2543 |
+
value: 61.23456790123457
|
2544 |
+
- type: manhattan_recall
|
2545 |
+
value: 78.52242744063325
|
2546 |
+
- type: max_accuracy
|
2547 |
+
value: 86.21326816474935
|
2548 |
+
- type: max_ap
|
2549 |
+
value: 74.7367761466634
|
2550 |
+
- type: max_f1
|
2551 |
+
value: 68.81245642574947
|
2552 |
+
- task:
|
2553 |
+
type: PairClassification
|
2554 |
+
dataset:
|
2555 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2556 |
+
name: MTEB TwitterURLCorpus
|
2557 |
+
config: default
|
2558 |
+
split: test
|
2559 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2560 |
+
metrics:
|
2561 |
+
- type: cos_sim_accuracy
|
2562 |
+
value: 88.97620988085536
|
2563 |
+
- type: cos_sim_ap
|
2564 |
+
value: 86.08680845745758
|
2565 |
+
- type: cos_sim_f1
|
2566 |
+
value: 78.02793637114438
|
2567 |
+
- type: cos_sim_precision
|
2568 |
+
value: 73.11082699683736
|
2569 |
+
- type: cos_sim_recall
|
2570 |
+
value: 83.65414228518632
|
2571 |
+
- type: dot_accuracy
|
2572 |
+
value: 88.97620988085536
|
2573 |
+
- type: dot_ap
|
2574 |
+
value: 86.08681149437946
|
2575 |
+
- type: dot_f1
|
2576 |
+
value: 78.02793637114438
|
2577 |
+
- type: dot_precision
|
2578 |
+
value: 73.11082699683736
|
2579 |
+
- type: dot_recall
|
2580 |
+
value: 83.65414228518632
|
2581 |
+
- type: euclidean_accuracy
|
2582 |
+
value: 88.97620988085536
|
2583 |
+
- type: euclidean_ap
|
2584 |
+
value: 86.08681215460771
|
2585 |
+
- type: euclidean_f1
|
2586 |
+
value: 78.02793637114438
|
2587 |
+
- type: euclidean_precision
|
2588 |
+
value: 73.11082699683736
|
2589 |
+
- type: euclidean_recall
|
2590 |
+
value: 83.65414228518632
|
2591 |
+
- type: manhattan_accuracy
|
2592 |
+
value: 88.88888888888889
|
2593 |
+
- type: manhattan_ap
|
2594 |
+
value: 86.02916327562438
|
2595 |
+
- type: manhattan_f1
|
2596 |
+
value: 78.02063045516843
|
2597 |
+
- type: manhattan_precision
|
2598 |
+
value: 73.38851947346994
|
2599 |
+
- type: manhattan_recall
|
2600 |
+
value: 83.2768709578072
|
2601 |
+
- type: max_accuracy
|
2602 |
+
value: 88.97620988085536
|
2603 |
+
- type: max_ap
|
2604 |
+
value: 86.08681215460771
|
2605 |
+
- type: max_f1
|
2606 |
+
value: 78.02793637114438
|
2607 |
+
---
|
2608 |
+
<!-- TODO: add evaluation results here -->
|
2609 |
+
<br><br>
|
2610 |
+
|
2611 |
+
<p align="center">
|
2612 |
+
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
2613 |
+
</p>
|
2614 |
+
|
2615 |
+
|
2616 |
+
<p align="center">
|
2617 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
2618 |
+
</p>
|
2619 |
+
|
2620 |
+
## Quick Start
|
2621 |
+
|
2622 |
+
The easiest way to starting using `jina-embeddings-v2-base-en` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
2623 |
+
|
2624 |
+
## Intended Usage & Model Info
|
2625 |
+
|
2626 |
+
`jina-embeddings-v2-base-en` is an English, monolingual **embedding model** supporting **8192 sequence length**.
|
2627 |
+
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
|
2628 |
+
The backbone `jina-bert-v2-base-en` is pretrained on the C4 dataset.
|
2629 |
+
The model is further trained on Jina AI's collection of more than 400 millions of sentence pairs and hard negatives.
|
2630 |
+
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
|
2631 |
+
|
2632 |
+
The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi.
|
2633 |
+
This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search, etc.
|
2634 |
+
|
2635 |
+
With a standard size of 137 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference.
|
2636 |
+
Additionally, we provide the following embedding models:
|
2637 |
+
|
2638 |
+
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
2639 |
+
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters **(you are here)**.
|
2640 |
+
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
|
2641 |
+
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
|
2642 |
+
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings.
|
2643 |
+
|
2644 |
+
## Data & Parameters
|
2645 |
+
|
2646 |
+
Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)
|
2647 |
+
|
2648 |
+
## Usage
|
2649 |
+
|
2650 |
+
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
|
2651 |
+
<p>
|
2652 |
+
|
2653 |
+
### Why mean pooling?
|
2654 |
+
|
2655 |
+
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
|
2656 |
+
It has been proved to be the most effective way to produce high-quality sentence embeddings.
|
2657 |
+
We offer an `encode` function to deal with this.
|
2658 |
+
|
2659 |
+
However, if you would like to do it without using the default `encode` function:
|
2660 |
+
|
2661 |
+
```python
|
2662 |
+
import torch
|
2663 |
+
import torch.nn.functional as F
|
2664 |
+
from transformers import AutoTokenizer, AutoModel
|
2665 |
+
|
2666 |
+
def mean_pooling(model_output, attention_mask):
|
2667 |
+
token_embeddings = model_output[0]
|
2668 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
2669 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
2670 |
+
|
2671 |
+
sentences = ['How is the weather today?', 'What is the current weather like today?']
|
2672 |
+
|
2673 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-small-en')
|
2674 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-small-en', trust_remote_code=True)
|
2675 |
+
|
2676 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2677 |
+
|
2678 |
+
with torch.no_grad():
|
2679 |
+
model_output = model(**encoded_input)
|
2680 |
+
|
2681 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
2682 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2683 |
+
```
|
2684 |
+
|
2685 |
+
</p>
|
2686 |
+
</details>
|
2687 |
+
|
2688 |
+
You can use Jina Embedding models directly from transformers package.
|
2689 |
+
|
2690 |
+
First, you need to make sure that you are logged into huggingface. You can either use the huggingface-cli tool (after installing the `transformers` package) and pass your [hugginface access token](https://huggingface.co/docs/hub/security-tokens):
|
2691 |
+
```bash
|
2692 |
+
huggingface-cli login
|
2693 |
+
```
|
2694 |
+
Alternatively, you can provide the access token as an environment variable in the shell:
|
2695 |
+
```bash
|
2696 |
+
export HF_TOKEN="<your token here>"
|
2697 |
+
```
|
2698 |
+
or in Python:
|
2699 |
+
```python
|
2700 |
+
import os
|
2701 |
+
|
2702 |
+
os.environ['HF_TOKEN'] = "<your token here>"
|
2703 |
+
```
|
2704 |
+
|
2705 |
+
Then, you can use load and use the model via the `AutoModel` class:
|
2706 |
+
|
2707 |
+
```python
|
2708 |
+
!pip install transformers
|
2709 |
+
from transformers import AutoModel
|
2710 |
+
from numpy.linalg import norm
|
2711 |
+
|
2712 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
2713 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True) # trust_remote_code is needed to use the encode method
|
2714 |
+
embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
|
2715 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
2716 |
+
```
|
2717 |
+
|
2718 |
+
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
|
2719 |
+
|
2720 |
+
```python
|
2721 |
+
embeddings = model.encode(
|
2722 |
+
['Very long ... document'],
|
2723 |
+
max_length=2048
|
2724 |
+
)
|
2725 |
+
```
|
2726 |
+
|
2727 |
+
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
|
2728 |
+
|
2729 |
+
```python
|
2730 |
+
!pip install -U sentence-transformers
|
2731 |
+
from sentence_transformers import SentenceTransformer
|
2732 |
+
from sentence_transformers.util import cos_sim
|
2733 |
+
|
2734 |
+
model = SentenceTransformer(
|
2735 |
+
"jinaai/jina-embeddings-v2-base-en", # switch to en/zh for English or Chinese
|
2736 |
+
trust_remote_code=True
|
2737 |
+
)
|
2738 |
+
|
2739 |
+
# control your input sequence length up to 8192
|
2740 |
+
model.max_seq_length = 1024
|
2741 |
+
|
2742 |
+
embeddings = model.encode([
|
2743 |
+
'How is the weather today?',
|
2744 |
+
'What is the current weather like today?'
|
2745 |
+
])
|
2746 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
2747 |
+
```
|
2748 |
+
|
2749 |
+
## Alternatives to Using Transformers (or SentencTransformers) Package
|
2750 |
+
|
2751 |
+
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
2752 |
+
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
|
2753 |
+
|
2754 |
+
|
2755 |
+
## Use Jina Embeddings for RAG
|
2756 |
+
|
2757 |
+
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
|
2758 |
+
|
2759 |
+
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
|
2760 |
+
|
2761 |
+
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
|
2762 |
+
|
2763 |
+
|
2764 |
+
## Plans
|
2765 |
+
|
2766 |
+
1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
|
2767 |
+
2. Multimodal embedding models enable Multimodal RAG applications.
|
2768 |
+
3. High-performt rerankers.
|
2769 |
+
|
2770 |
+
## Trouble Shooting
|
2771 |
+
|
2772 |
+
**Loading of Model Code failed**
|
2773 |
+
|
2774 |
+
If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
|
2775 |
+
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
|
2776 |
+
|
2777 |
+
```bash
|
2778 |
+
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
|
2779 |
+
```
|
2780 |
+
|
2781 |
+
|
2782 |
+
**User is not logged into Huggingface**
|
2783 |
+
|
2784 |
+
The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated).
|
2785 |
+
This means you need to be logged into huggingface load load it.
|
2786 |
+
If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above:
|
2787 |
+
```bash
|
2788 |
+
OSError: jinaai/jina-embeddings-v2-base-en is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
|
2789 |
+
If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`.
|
2790 |
+
```
|
2791 |
+
|
2792 |
+
## Contact
|
2793 |
+
|
2794 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
2795 |
+
|
2796 |
+
## Citation
|
2797 |
+
|
2798 |
+
If you find Jina Embeddings useful in your research, please cite the following paper:
|
2799 |
+
|
2800 |
+
```
|
2801 |
+
@misc{günther2023jina,
|
2802 |
+
title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
|
2803 |
+
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
|
2804 |
+
year={2023},
|
2805 |
+
eprint={2310.19923},
|
2806 |
+
archivePrefix={arXiv},
|
2807 |
+
primaryClass={cs.CL}
|
2808 |
+
}
|
2809 |
+
```
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jinaai/jina-bert-implementation",
|
3 |
+
"model_max_length": 8192,
|
4 |
+
"architectures": [
|
5 |
+
"JinaBertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_jina.JinaBertConfig"
|
10 |
+
},
|
11 |
+
"classifier_dropout": null,
|
12 |
+
"gradient_checkpointing": false,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout_prob": 0.1,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"layer_norm_eps": 1e-12,
|
19 |
+
"max_position_embeddings": 8192,
|
20 |
+
"model_type": "bert",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"position_embedding_type": "alibi",
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.26.0",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 30528,
|
30 |
+
"feed_forward_type": "geglu",
|
31 |
+
"emb_pooler": "mean"
|
32 |
+
}
|
configuration_jina.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class JinaBertConfig(PretrainedConfig):
|
9 |
+
r"""
|
10 |
+
This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
|
11 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
12 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
13 |
+
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
14 |
+
|
15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
16 |
+
documentation from [`PretrainedConfig`] for more information.
|
17 |
+
|
18 |
+
|
19 |
+
Args:
|
20 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
21 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
22 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
23 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
24 |
+
Dimensionality of the encoder layers and the pooler layer.
|
25 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
26 |
+
Number of hidden layers in the Transformer encoder.
|
27 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
28 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
29 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
30 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
31 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
32 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
33 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
34 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
35 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
36 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
37 |
+
The dropout ratio for the attention probabilities.
|
38 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
39 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
40 |
+
just in case (e.g., 512 or 1024 or 2048).
|
41 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
42 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
43 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
44 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
45 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
46 |
+
The epsilon used by the layer normalization layers.
|
47 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
48 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
49 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
50 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
51 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
52 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
53 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
54 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
55 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
57 |
+
relevant if `config.is_decoder=True`.
|
58 |
+
classifier_dropout (`float`, *optional*):
|
59 |
+
The dropout ratio for the classification head.
|
60 |
+
feed_forward_type (`str`, *optional*, defaults to `"original"`):
|
61 |
+
The type of feed forward layer to use in the bert layers.
|
62 |
+
Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
|
63 |
+
emb_pooler (`str`, *optional*, defaults to `None`):
|
64 |
+
The function to use for pooling the last layer embeddings to get the sentence embeddings.
|
65 |
+
Should be one of `None`, `"mean"`.
|
66 |
+
attn_implementation (`str`, *optional*, defaults to `"torch"`):
|
67 |
+
The implementation of the self-attention layer. Can be one of:
|
68 |
+
- `None` for the original implementation,
|
69 |
+
- `torch` for the PyTorch SDPA implementation,
|
70 |
+
|
71 |
+
Examples:
|
72 |
+
|
73 |
+
```python
|
74 |
+
>>> from transformers import JinaBertConfig, JinaBertModel
|
75 |
+
|
76 |
+
>>> # Initializing a JinaBert configuration
|
77 |
+
>>> configuration = JinaBertConfig()
|
78 |
+
|
79 |
+
>>> # Initializing a model (with random weights) from the configuration
|
80 |
+
>>> model = JinaBertModel(configuration)
|
81 |
+
|
82 |
+
>>> # Accessing the model configuration
|
83 |
+
>>> configuration = model.config
|
84 |
+
|
85 |
+
>>> # Encode text inputs
|
86 |
+
>>> embeddings = model.encode(text_inputs)
|
87 |
+
```"""
|
88 |
+
model_type = "bert"
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
vocab_size=30522,
|
93 |
+
hidden_size=768,
|
94 |
+
num_hidden_layers=12,
|
95 |
+
num_attention_heads=12,
|
96 |
+
intermediate_size=3072,
|
97 |
+
hidden_act="gelu",
|
98 |
+
hidden_dropout_prob=0.1,
|
99 |
+
attention_probs_dropout_prob=0.1,
|
100 |
+
max_position_embeddings=512,
|
101 |
+
type_vocab_size=2,
|
102 |
+
initializer_range=0.02,
|
103 |
+
layer_norm_eps=1e-12,
|
104 |
+
pad_token_id=0,
|
105 |
+
position_embedding_type="absolute",
|
106 |
+
use_cache=True,
|
107 |
+
classifier_dropout=None,
|
108 |
+
feed_forward_type="original",
|
109 |
+
emb_pooler=None,
|
110 |
+
attn_implementation="torch",
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
114 |
+
|
115 |
+
self.vocab_size = vocab_size
|
116 |
+
self.hidden_size = hidden_size
|
117 |
+
self.num_hidden_layers = num_hidden_layers
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.hidden_act = hidden_act
|
120 |
+
self.intermediate_size = intermediate_size
|
121 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
122 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.type_vocab_size = type_vocab_size
|
125 |
+
self.initializer_range = initializer_range
|
126 |
+
self.layer_norm_eps = layer_norm_eps
|
127 |
+
self.position_embedding_type = position_embedding_type
|
128 |
+
self.use_cache = use_cache
|
129 |
+
self.classifier_dropout = classifier_dropout
|
130 |
+
self.feed_forward_type = feed_forward_type
|
131 |
+
self.emb_pooler = emb_pooler
|
132 |
+
self.attn_implementation = attn_implementation
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"pad_token_id": 0,
|
4 |
+
"transformers_version": "4.26.0"
|
5 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b70f1386f05b9703ea4edf7f1550a8925399f9580e4cc754cc099efc1e736d8
|
3 |
+
size 274757256
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cd5a65131aa1db04c4146f474bdf68fac06417cba56789f4e6aaabd190e2818
|
3 |
+
size 274773117
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 2147483648,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|