update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: kobigbird-bert-base-finetuned-klue
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# kobigbird-bert-base-finetuned-klue
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 1.9124
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 32
|
37 |
+
- eval_batch_size: 32
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- num_epochs: 60
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
46 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
47 |
+
| 5.1951 | 0.69 | 500 | 3.9518 |
|
48 |
+
| 3.7508 | 1.38 | 1000 | 3.4423 |
|
49 |
+
| 3.4379 | 2.07 | 1500 | 3.1397 |
|
50 |
+
| 3.1865 | 2.76 | 2000 | 2.8141 |
|
51 |
+
| 2.9852 | 3.45 | 2500 | 2.6055 |
|
52 |
+
| 2.7907 | 4.14 | 3000 | 2.4892 |
|
53 |
+
| 2.6985 | 4.83 | 3500 | 2.4130 |
|
54 |
+
| 2.63 | 5.52 | 4000 | 2.3479 |
|
55 |
+
| 2.5616 | 6.21 | 4500 | 2.3134 |
|
56 |
+
| 2.4898 | 6.9 | 5000 | 2.2526 |
|
57 |
+
| 2.4167 | 7.59 | 5500 | 2.2422 |
|
58 |
+
| 2.3861 | 8.28 | 6000 | 2.2138 |
|
59 |
+
| 2.3401 | 8.97 | 6500 | 2.1762 |
|
60 |
+
| 2.292 | 9.66 | 7000 | 2.1417 |
|
61 |
+
| 2.2705 | 10.34 | 7500 | 2.1148 |
|
62 |
+
| 2.2139 | 11.03 | 8000 | 2.1357 |
|
63 |
+
| 2.187 | 11.72 | 8500 | 2.0995 |
|
64 |
+
| 2.1518 | 12.41 | 9000 | 2.0554 |
|
65 |
+
| 2.1179 | 13.1 | 9500 | 2.0467 |
|
66 |
+
| 2.0781 | 13.79 | 10000 | 2.0418 |
|
67 |
+
| 2.0457 | 14.48 | 10500 | 2.0057 |
|
68 |
+
| 2.0326 | 15.17 | 11000 | 2.0022 |
|
69 |
+
| 1.9976 | 15.86 | 11500 | 2.0137 |
|
70 |
+
| 1.9602 | 16.55 | 12000 | 1.9703 |
|
71 |
+
| 1.9435 | 17.24 | 12500 | 1.9920 |
|
72 |
+
| 1.9092 | 17.93 | 13000 | 1.9504 |
|
73 |
+
| 1.8714 | 18.62 | 13500 | 1.9731 |
|
74 |
+
| 1.8715 | 19.31 | 14000 | 1.9471 |
|
75 |
+
| 1.8824 | 20.0 | 14500 | 1.9462 |
|
76 |
+
| 1.8261 | 20.69 | 15000 | 1.9412 |
|
77 |
+
| 1.815 | 21.38 | 15500 | 1.9308 |
|
78 |
+
| 1.7988 | 22.07 | 16000 | 1.9285 |
|
79 |
+
| 1.7722 | 22.76 | 16500 | 1.9341 |
|
80 |
+
| 1.7606 | 23.45 | 17000 | 1.9007 |
|
81 |
+
| 1.7402 | 24.14 | 17500 | 1.9206 |
|
82 |
+
| 1.7177 | 24.83 | 18000 | 1.9125 |
|
83 |
+
| 1.7117 | 25.52 | 18500 | 1.9178 |
|
84 |
+
| 1.6834 | 26.21 | 19000 | 1.9082 |
|
85 |
+
| 1.6893 | 26.9 | 19500 | 1.9124 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.18.0
|
91 |
+
- Pytorch 1.11.0.dev20211231+cu113
|
92 |
+
- Datasets 2.1.0
|
93 |
+
- Tokenizers 0.12.1
|