File size: 3,048 Bytes
dc91234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
model-index:
- name: ibm/PowerMoE-3b
  results:
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: ARC
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 58.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: BoolQ
    metrics:
    - name: accuracy
      type: accuracy
      value: 65
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: Hellaswag
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 71.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: OpenBookQA
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 41
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: PIQA
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 79.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: Winogrande
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 65
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: MMLU (5 shot)
    metrics:
    - name: accuracy
      type: accuracy
      value: 42.8
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: GSM8k (5 shot)
    metrics:
    - name: accuracy
      type: accuracy
      value: 25.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: math (4 shot)
    metrics:
    - name: accuracy
      type: accuracy
      value: 14.8
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode-eval
      name: humaneval
    metrics:
    - name: pass@1
      type: pass@1
      value: 20.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode-eval
      name: MBPP
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.4
      verified: false
base_model:
- ibm/PowerMoE-3b
---

## Model Summary
PowerMoE-3B is a 3B sparse Mixture-of-Experts (sMoE) language model trained with the Power learning rate scheduler. It sparsely activates 800M parameters for each token. It is trained on a mix of open-source and proprietary datasets. PowerMoE-3B has shown promising results compared to other dense models with 2x activate parameters across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
Paper: https://arxiv.org/abs/2408.13359

This is a GGUF quantized version.

## Usage
Requires latest llama.cpp to run.

### Generation
This is a simple example of how to use the PowerMoe GGUF:

./llama-cli -m PowerMoE4x800M_q3km.gguf -p "How about a snack?"