File size: 5,703 Bytes
e6df2ea cf7a58b e6df2ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature_extraction
- sentence-similarity
- transformers.js
- onnx
widget:
- example_title: Nederlands
source_sentence: Deze week ga ik naar de kapper
sentences:
- Ik ga binnenkort mijn haren laten knippen
- Morgen wil ik uitslapen
- Gisteren ging ik naar de bioscoop
datasets:
- NetherlandsForensicInstitute/AllNLI-translated-nl
- NetherlandsForensicInstitute/altlex-translated-nl
- NetherlandsForensicInstitute/coco-captions-translated-nl
- NetherlandsForensicInstitute/flickr30k-captions-translated-nl
- NetherlandsForensicInstitute/msmarco-translated-nl
- NetherlandsForensicInstitute/quora-duplicates-translated-nl
- NetherlandsForensicInstitute/sentence-compression-translated-nl
- NetherlandsForensicInstitute/simplewiki-translated-nl
- NetherlandsForensicInstitute/stackexchange-duplicate-questions-translated-nl
- NetherlandsForensicInstitute/wiki-atomic-edits-translated-nl
language:
- nl
---
# robbert-2022-dutch-sentence-transformers - Onnx
- Model creator: [Netherlands Forensic Institute](https://huggingface.co/NetherlandsForensicInstitute)
- Original model: [robbert-2022-dutch-sentence-transformers](https://huggingface.co/NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers)
# Description
This Onnx model is a converted version of robbert-2022-dutch-sentence-transformers using the transformers.js script found [here](https://github.com/xenova/transformers.js?tab=readme-ov-file#convert-your-models-to-onnx).
# Original model card: robbert-2022-dutch-sentence-transformers
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
This model is based on [KU Leuven's RobBERT model](https://huggingface.co/DTAI-KULeuven/robbert-2022-dutch-base).
It has been finetuned on the [Paraphrase dataset](https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/paraphrases/), which we (machine-) translated to Dutch. The Paraphrase dataset consists of multiple datasets that consist of duo's of similar texts, for example duplicate questions on a forum.
We have released the translated data that we used to train this model on our Huggingface page.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers}')
model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 414262 with parameters:
```
{'batch_size': 1}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 50000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |