Todai commited on
Commit
e6df2ea
1 Parent(s): 96b78d6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -0
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers.js
8
+ - onnx
9
+ widget:
10
+ - example_title: Nederlands
11
+ source_sentence: Deze week ga ik naar de kapper
12
+ sentences:
13
+ - Ik ga binnenkort mijn haren laten knippen
14
+ - Morgen wil ik uitslapen
15
+ - Gisteren ging ik naar de bioscoop
16
+ datasets:
17
+ - NetherlandsForensicInstitute/AllNLI-translated-nl
18
+ - NetherlandsForensicInstitute/altlex-translated-nl
19
+ - NetherlandsForensicInstitute/coco-captions-translated-nl
20
+ - NetherlandsForensicInstitute/flickr30k-captions-translated-nl
21
+ - NetherlandsForensicInstitute/msmarco-translated-nl
22
+ - NetherlandsForensicInstitute/quora-duplicates-translated-nl
23
+ - NetherlandsForensicInstitute/sentence-compression-translated-nl
24
+ - NetherlandsForensicInstitute/simplewiki-translated-nl
25
+ - NetherlandsForensicInstitute/stackexchange-duplicate-questions-translated-nl
26
+ - NetherlandsForensicInstitute/wiki-atomic-edits-translated-nl
27
+ language:
28
+ - nl
29
+ ---
30
+
31
+ # robbert-2022-dutch-sentence-transformers - Onnx
32
+ - Model creator: [Netherlands Forensic Institute](https://huggingface.co/NetherlandsForensicInstitute)
33
+ - Original model: [robbert-2022-dutch-sentence-transformers](https://huggingface.co/NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers)
34
+
35
+ # Description
36
+ This Onnx model is a converted version of robbert-2022-dutch-sentence-transformers using the transformers.js script found [here](https://github.com/xenova/transformers.js?tab=readme-ov-file#convert-your-models-to-onnx).
37
+
38
+ # Original model card: robbert-2022-dutch-sentence-transformers
39
+
40
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
41
+
42
+ <!--- Describe your model here -->
43
+
44
+ This model is based on [KU Leuven's RobBERT model](https://huggingface.co/DTAI-KULeuven/robbert-2022-dutch-base).
45
+ It has been finetuned on the [Paraphrase dataset](https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/datasets/paraphrases/), which we (machine-) translated to Dutch. The Paraphrase dataset consists of multiple datasets that consist of duo's of similar texts, for example duplicate questions on a forum.
46
+ We have released the translated data that we used to train this model on our Huggingface page.
47
+
48
+ ## Usage (Sentence-Transformers)
49
+
50
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
51
+
52
+ ```
53
+ pip install -U sentence-transformers
54
+ ```
55
+
56
+ Then you can use the model like this:
57
+
58
+ ```python
59
+ from sentence_transformers import SentenceTransformer
60
+ sentences = ["This is an example sentence", "Each sentence is converted"]
61
+
62
+ model = SentenceTransformer('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
63
+ embeddings = model.encode(sentences)
64
+ print(embeddings)
65
+ ```
66
+
67
+
68
+
69
+ ## Usage (HuggingFace Transformers)
70
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
71
+
72
+ ```python
73
+ from transformers import AutoTokenizer, AutoModel
74
+ import torch
75
+
76
+
77
+ #Mean Pooling - Take attention mask into account for correct averaging
78
+ def mean_pooling(model_output, attention_mask):
79
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
80
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
81
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
82
+
83
+
84
+ # Sentences we want sentence embeddings for
85
+ sentences = ['This is an example sentence', 'Each sentence is converted']
86
+
87
+ # Load model from HuggingFace Hub
88
+ tokenizer = AutoTokenizer.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers}')
89
+ model = AutoModel.from_pretrained('NetherlandsForensicInstitute/robbert-2022-dutch-sentence-transformers')
90
+
91
+ # Tokenize sentences
92
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
93
+
94
+ # Compute token embeddings
95
+ with torch.no_grad():
96
+ model_output = model(**encoded_input)
97
+
98
+ # Perform pooling. In this case, mean pooling.
99
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
100
+
101
+ print("Sentence embeddings:")
102
+ print(sentence_embeddings)
103
+ ```
104
+
105
+
106
+ ## Training
107
+ The model was trained with the parameters:
108
+
109
+ **DataLoader**:
110
+
111
+ `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 414262 with parameters:
112
+ ```
113
+ {'batch_size': 1}
114
+ ```
115
+
116
+ **Loss**:
117
+
118
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
119
+ ```
120
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
121
+ ```
122
+
123
+ Parameters of the fit()-Method:
124
+ ```
125
+ {
126
+ "epochs": 1,
127
+ "evaluation_steps": 50000,
128
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
129
+ "max_grad_norm": 1,
130
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
131
+ "optimizer_params": {
132
+ "lr": 2e-05
133
+ },
134
+ "scheduler": "WarmupLinear",
135
+ "steps_per_epoch": null,
136
+ "warmup_steps": 500,
137
+ "weight_decay": 0.01
138
+ }
139
+ ```
140
+
141
+
142
+ ## Full Model Architecture
143
+ ```
144
+ SentenceTransformer(
145
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
146
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
147
+ )
148
+ ```
149
+
150
+ ## Citing & Authors
151
+
152
+ <!--- Describe where people can find more information -->