Text2Text Generation
Transformers
Safetensors
t5
text-generation-inference
Inference Endpoints
File size: 12,915 Bytes
1f3179d
ac4d8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32af35
ac4d8b3
 
1f3179d
ac4d8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
---
language:
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- ceb
- co
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- haw
- he
- hi
- hmn
- ht
- hu
- hy
- id
- ig
- is
- it
- iw
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- lv
- mg
- mi
- mk
- ml
- mn
- mr
- ms
- mt
- my
- ne
- nl
- 'no'
- ny
- pa
- pl
- ps
- pt
- ro
- ru
- sd
- si
- sk
- sl
- sm
- sn
- so
- sq
- sr
- st
- su
- sv
- sw
- ta
- te
- tg
- th
- tr
- uk
- und
- ur
- uz
- vi
- xh
- yi
- yo
- zh
- zu
license: mit
datasets:
- mc4
---

# MyT5



## Model Details

MyT5 (**My**te **T5**) is a multilingual language model based on T5 architecture.
The model uses a **m**orphologically-driven **byte** (**MYTE**) representation described in our paper [Limisiewicz et al., 2024](https://arxiv.org/pdf/2403.10691.pdf).

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Tomasz Limisiewicz, Terra Blevins, Hila Gonen, Orevaoghene Ahia, Luke Zettlemoyer
- **Funded by:** University of Washington Fellowship, Charles University Grant Agency
- **Model type:** T5
- **Language(s) (NLP):** Multilingual
- **License:** MIT

### Model Sizes

- **[Small](https://huggingface.co/Tomlim/myt5-small)**: 300M parameters
- **[Base](https://huggingface.co/Tomlim/myt5-base)**: 582M parameters
- **[Large](https://huggingface.co/Tomlim/myt5-large)**: 1.2B parameters
  
### Model Sources 

<!-- Provide the basic links for the model. -->

- **[Repository](https://github.com/tomlimi/MYTE)** 
- **[Paper](https://arxiv.org/pdf/2403.10691.pdf)** 

## How to Get Started with the Model

The snippet below shows the basic usage of the model for multilingual language modeling.
Custom Tokenizer is available in [GitHub](https://github.com/tomlimi/MYTE])repository, in `src/myt5/myt5_tokenizer.py`.
We also plan to release it on HuggingFace in the future.

```python
from transformers import T5ForConditionalGeneration
from src.myt5.myt5_tokenizer import MyT5Tokenizer
import torch

MODEL_SIZE = "large" # small, base, or large

model = T5ForConditionalGeneration.from_pretrained(f"Tomlim/MyT5_{MODEL_SIZE}", use_safetensors=True)
tokenizer = MyT5Tokenizer()

pre_texts = ['"We now have',
            '„Mamy teraz myszy w wieku',
            '"""எங்களிடம் இப்போது']
post_texts = ['4-month-old mice that are non-diabetic that used to be diabetic," he added.',
              '4 miesięcy, które miały cukrzycę, ale zostały z niej wyleczone” – dodał.',
              '4-மாத-வயதுடைய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்போது இல்லை"" என்று அவர் மேலும் கூறினார்."']

inputs = tokenizer(pre_texts, padding="longest", return_tensors="pt")
targets = tokenizer(post_texts, padding="longest", return_tensors="pt")


outputs = model(**inputs, labels=targets.input_ids)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
```

## Training Details

### Training Data

The model was trained on the standard T5 task of restoring corrupted spans in the multilingual MC4 dataset.

### Preprocessing

Instead of UTF-8 bytes, we used morphologically-driven byte representation.
See the description in our [paper](https://arxiv.org/pdf/2403.10691.pdf) for more details.


### Training Hyperparameters

We used the same hyperparameters as in the original ByT5 paper.
The only difference is that we decreased the number of training steps to 250,000 to avoid overfiting.

### Computational Infrastructure

Models were trained on TPUs available through TPU Research Cloud (TRC).
We used v3-8 TPU for training small and base models and v3-32 for a large model.
The training for each instance took:

- **Small**: 90h
- **Base**: 230h
- **Large**: 190h

# Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

MyT5 models are compared with reimplementation of [ByT5](https://huggingface.co/docs/transformers/model_doc/byt5) models trained for 250,000 steps. 

## Language Modeling

We have evaluated LM performance on multi-parallel [FLORES 200](https://arxiv.org/pdf/2207.04672v3.pdf) corpus.
To compare the scores across languages and models, we used a normalized metric, i.e., Bit-per-English-Byte (BPEB).

### Results

|       |           | ByT5 |        | MyT5 |        |
|-------|-----------|------|--------|------|--------|
|       |           | BPEB | T (ms) | BPEB | T (ms) |
| small | All       | 10.1 | 7.0    | 4.6  | 6.7    |
|       | Latin     | 4.6  | 5.9    | 4.2  | 6.6    |
|       | Non Latin | 18.1 | 8.5    | 5.1  | 6.8    |
| base  | All       | 8.2  | 11.5   | 5.8  | 8.9    |
|       | Latin     | 4.9  | 9.4    | 5.0  | 8.7    |
|       | Non Latin | 13.0 | 14.6   | 6.9  | 9.1    |
| large | All       | 13.4 | 31.8   | 4.6  | 26.7   |
|       | Latin     | 10.1 | 28.1   | 4.0  | 26.6   |
|       | Non Latin | 18.2 | 37.3   | 5.4  | 27.0   |

Byte-per-English-Bits and Inference times (average per Flores 200 sentence) averaged for three language groupings. 
The inference was run on an A40 GPU core.

## Downstream Tasks

We tested the large model in four end-tasks: question answering, NER, semantic parsing, and machine translation.
The test data come from XTREME-UP benchmark ([Ruder, Clark et al., 2023](https://arxiv.org/pdf/2305.11938.pdf)), which covers mainly low-resource languages

### Fine-tuning

In each task, we fine-tuned for all languages jointly.
We used 1e-3 learning rate with square root decay and dropout of 0.1.
The batch size and training varied across tasks:

- **NER**: 128 examples per batch, 6000 steps
- **QA**: 64 examples per batch, 6500 steps
- **Semantic Parsing**: 64 examples per batch, 1000 steps
- **MT**: 64 examples per batch, 10000 steps


### Results

 Task       | QA (F1)  | NER (F1) | Semantic Parsing (EM)| MT (chrF) 
------------|------|------|------------------|------ 
 Flan-PaLM* | 22.9 | 12.0 | 0.1              | ---  
 mT5*       | 59.7 | 74.0 | 21.8             | ---  
 ByT5       | 73.2 | 81.5 | 25.1             | 20.1 
 MyT5       | 75.3 | 80.8 | 19.6             | 20.4 
Inference Times  per example (ms)
 ByT5       | 36.2 | 13.8 | 13.2             | 15.9 
 MyT5       | 35.6 | 12.6 | 12.4             | 12.6 

The average result of XTREME-UP tasks across low-resource languages.
The baseline results of mT5 and Flan-PaLM (in-context-learning evaluation) are reported in [Ruder, Clark et al., 2023](https://arxiv.org/pdf/2305.11938.pdf). 
The reported inference time is an average across evaluation examples; the inference was run on an A40 GPU core.

## Citation

```bibtex
@misc{limisiewicz2024myte,
      title={MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling}, 
      author={Tomasz Limisiewicz and Terra Blevins and Hila Gonen and Orevaoghene Ahia and Luke Zettlemoyer},
      year={2024},
      eprint={2403.10691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```


## Model Card Author

[Tomasz Limisiewicz](mailto:limisewicz@ufal.mff.cuni.cz)---
license: mit
language:
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- ceb
- co
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- haw
- he
- hi
- hmn
- ht
- hu
- hy
- id
- ig
- is
- it
- iw
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- lv
- mg
- mi
- mk
- ml
- mn
- mr
- ms
- mt
- my
- ne
- nl
- 'no'
- ny
- pa
- pl
- ps
- pt
- ro
- ru
- sd
- si
- sk
- sl
- sm
- sn
- so
- sq
- sr
- st
- su
- sv
- sw
- ta
- te
- tg
- th
- tr
- uk
- und
- ur
- uz
- vi
- xh
- yi
- yo
- zh
- zu
datasets:
- mc4
---

# MyT5



## Model Details

MyT5 (**My**te **T5**) is a multilingual language model based on T5 architecture.
The model uses a **m**orphologically-driven **byte** (**MYTE**) representation described in our paper [Limisiewicz et al., 2024](https://arxiv.org/pdf/2403.10691.pdf).

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Tomasz Limisiewicz, Terra Blevins, Hila Gonen, Orevaoghene Ahia, Luke Zettlemoyer
- **Funded by:** University of Washington Fellowship, Charles University Grant Agency
- **Model type:** T5
- **Language(s) (NLP):** Multilingual
- **License:** MIT

### Model Sizes

- **[Small](https://huggingface.co/Tomlim/myt5-small)**: 300M parameters
- **[Base](https://huggingface.co/Tomlim/myt5-base)**: 582M parameters
- **[Large](https://huggingface.co/Tomlim/myt5-large)**: 1.2B parameters
  
### Model Sources 

<!-- Provide the basic links for the model. -->

- **[Repository](https://github.com/tomlimi/MYTE)** 
- **[Paper](https://arxiv.org/pdf/2403.10691.pdf)** 

## How to Get Started with the Model

The snippet below shows the basic usage of the model for multilingual language modeling.
Custom Tokenizer is available in [GitHub](https://github.com/tomlimi/MYTE])repository, in `src/myt5/myt5_tokenizer.py`.
We also plan to release it on HuggingFace in the future.

```python
from transformers import T5ForConditionalGeneration
from src.myt5.myt5_tokenizer import MyT5Tokenizer
import torch

MODEL_SIZE = "large" # small, base, or large

model = T5ForConditionalGeneration.from_pretrained(f"Tomlim/MyT5_{MODEL_SIZE}", use_safetensors=True)
tokenizer = MyT5Tokenizer()

pre_texts = ['"We now have',
            '„Mamy teraz myszy w wieku',
            '"""எங்களிடம் இப்போது']
post_texts = ['4-month-old mice that are non-diabetic that used to be diabetic," he added.',
              '4 miesięcy, które miały cukrzycę, ale zostały z niej wyleczone” – dodał.',
              '4-மாத-வயதுடைய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்போது இல்லை"" என்று அவர் மேலும் கூறினார்."']

inputs = tokenizer(pre_texts, padding="longest", return_tensors="pt")
targets = tokenizer(post_texts, padding="longest", return_tensors="pt")


outputs = model(**inputs, labels=targets.input_ids)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
```

## Training Details

### Training Data

The model was trained on the standard T5 task of restoring corrupted spans in the multilingual MC4 dataset.

### Preprocessing

Instead of UTF-8 bytes, we used morphologically-driven byte representation.
See the description in our [paper](https://arxiv.org/pdf/2403.10691.pdf) for more details.


### Training Hyperparameters

We used the same hyperparameters as in the original ByT5 paper.
The only difference is that we decreased the number of training steps to 250,000 to avoid overfiting.

### Computational Infrastructure

Models were trained on TPUs available through TPU Research Cloud (TRC).
We used v3-8 TPU for training small and base models and v3-32 for a large model.
The training for each instance took:

- **Small**: 90h
- **Base**: 230h
- **Large**: 190h

# Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

MyT5 models are compared with reimplementation of [ByT5](https://huggingface.co/docs/transformers/model_doc/byt5) models trained for 250,000 steps. 

## Language Modeling

We have evaluated LM performance on multi-parallel [FLORES 200](https://arxiv.org/pdf/2207.04672v3.pdf) corpus.
To compare the scores across languages and models, we used a normalized metric, i.e., Bit-per-English-Byte (BPEB).

### Results

|       |           | ByT5 |        | MyT5 |        |
|-------|-----------|------|--------|------|--------|
|       |           | BPEB | T (ms) | BPEB | T (ms) |
| small | All       | 10.1 | 7.0    | 4.6  | 6.7    |
|       | Latin     | 4.6  | 5.9    | 4.2  | 6.6    |
|       | Non Latin | 18.1 | 8.5    | 5.1  | 6.8    |
| base  | All       | 8.2  | 11.5   | 5.8  | 8.9    |
|       | Latin     | 4.9  | 9.4    | 5.0  | 8.7    |
|       | Non Latin | 13.0 | 14.6   | 6.9  | 9.1    |
| large | All       | 13.4 | 31.8   | 4.6  | 26.7   |
|       | Latin     | 10.1 | 28.1   | 4.0  | 26.6   |
|       | Non Latin | 18.2 | 37.3   | 5.4  | 27.0   |

Byte-per-English-Bits and Inference times (average per Flores 200 sentence) averaged for three language groupings. 
The inference was run on an A40 GPU core.


## Citation

```bibtex
@misc{limisiewicz2024myte,
      title={MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling}, 
      author={Tomasz Limisiewicz and Terra Blevins and Hila Gonen and Orevaoghene Ahia and Luke Zettlemoyer},
      year={2024},
      eprint={2403.10691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```


## Model Card Author

[Tomasz Limisiewicz](mailto:limisewicz@ufal.mff.cuni.cz)