--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert1110_lrate2.5b16 results: [] --- # multibert1110_lrate2.5b16 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5408 - Precisions: 0.8751 - Recall: 0.8102 - F-measure: 0.8365 - Accuracy: 0.9131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.6226 | 1.0 | 236 | 0.3957 | 0.8372 | 0.6871 | 0.6960 | 0.8714 | | 0.3373 | 2.0 | 472 | 0.3830 | 0.8460 | 0.7204 | 0.7485 | 0.8810 | | 0.2071 | 3.0 | 708 | 0.3464 | 0.8572 | 0.7790 | 0.7966 | 0.8985 | | 0.1384 | 4.0 | 944 | 0.4046 | 0.8653 | 0.7863 | 0.8128 | 0.9041 | | 0.0935 | 5.0 | 1180 | 0.4299 | 0.8559 | 0.7976 | 0.8209 | 0.9044 | | 0.0708 | 6.0 | 1416 | 0.4899 | 0.8709 | 0.7972 | 0.8269 | 0.9096 | | 0.0504 | 7.0 | 1652 | 0.4837 | 0.8578 | 0.8030 | 0.8254 | 0.9039 | | 0.0361 | 8.0 | 1888 | 0.5098 | 0.8448 | 0.7970 | 0.8173 | 0.9056 | | 0.0259 | 9.0 | 2124 | 0.5260 | 0.8622 | 0.7992 | 0.8241 | 0.9090 | | 0.0214 | 10.0 | 2360 | 0.5394 | 0.8676 | 0.8051 | 0.8316 | 0.9107 | | 0.0149 | 11.0 | 2596 | 0.5408 | 0.8751 | 0.8102 | 0.8365 | 0.9131 | | 0.0095 | 12.0 | 2832 | 0.5725 | 0.8709 | 0.8056 | 0.8321 | 0.9115 | | 0.0092 | 13.0 | 3068 | 0.5650 | 0.8658 | 0.8099 | 0.8326 | 0.9119 | | 0.0073 | 14.0 | 3304 | 0.5734 | 0.8637 | 0.8101 | 0.8317 | 0.9122 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1