--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned2809 results: [] --- # multibertfinetuned2809 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3581 - Precision: 0.7138 - Recall: 0.6758 - F1: 0.6943 - Accuracy: 0.8902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 118 | 0.3829 | 0.6730 | 0.6396 | 0.6559 | 0.8765 | | No log | 2.0 | 236 | 0.3581 | 0.7138 | 0.6758 | 0.6943 | 0.8902 | | No log | 3.0 | 354 | 0.3619 | 0.7362 | 0.7104 | 0.7230 | 0.8983 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3