File size: 2,820 Bytes
ab039c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: multibert_1310seed7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# multibert_1310seed7

This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4338
- Precisions: 0.8841
- Recall: 0.8144
- F-measure: 0.8437
- Accuracy: 0.9402

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 14

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.4441        | 1.0   | 236  | 0.2809          | 0.8700     | 0.7020 | 0.7222    | 0.9118   |
| 0.2161        | 2.0   | 472  | 0.2575          | 0.8741     | 0.7653 | 0.7818    | 0.9250   |
| 0.1277        | 3.0   | 708  | 0.2644          | 0.8331     | 0.8115 | 0.8175    | 0.9299   |
| 0.0891        | 4.0   | 944  | 0.2614          | 0.8671     | 0.8120 | 0.8341    | 0.9390   |
| 0.0559        | 5.0   | 1180 | 0.3259          | 0.8806     | 0.7923 | 0.8279    | 0.9332   |
| 0.0322        | 6.0   | 1416 | 0.3770          | 0.8807     | 0.8064 | 0.8333    | 0.9373   |
| 0.0241        | 7.0   | 1652 | 0.4548          | 0.8430     | 0.8213 | 0.8223    | 0.9323   |
| 0.0162        | 8.0   | 1888 | 0.3705          | 0.8493     | 0.8239 | 0.8343    | 0.9405   |
| 0.0099        | 9.0   | 2124 | 0.4498          | 0.8463     | 0.8094 | 0.8245    | 0.9369   |
| 0.0069        | 10.0  | 2360 | 0.4445          | 0.8606     | 0.8141 | 0.8328    | 0.9381   |
| 0.0062        | 11.0  | 2596 | 0.4429          | 0.8880     | 0.8075 | 0.8405    | 0.9383   |
| 0.0045        | 12.0  | 2832 | 0.4496          | 0.8794     | 0.8017 | 0.8322    | 0.9393   |
| 0.0041        | 13.0  | 3068 | 0.4338          | 0.8841     | 0.8144 | 0.8437    | 0.9402   |
| 0.0029        | 14.0  | 3304 | 0.4401          | 0.8850     | 0.8135 | 0.8437    | 0.9400   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1