--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert_seed35_1311 results: [] --- # multibert_seed35_1311 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4565 - Precisions: 0.8851 - Recall: 0.8156 - F-measure: 0.8447 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 35 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.4595 | 1.0 | 236 | 0.2631 | 0.8847 | 0.7209 | 0.7552 | 0.9209 | | 0.2301 | 2.0 | 472 | 0.2468 | 0.8447 | 0.7729 | 0.7954 | 0.9224 | | 0.1332 | 3.0 | 708 | 0.2457 | 0.8468 | 0.7925 | 0.8086 | 0.9301 | | 0.082 | 4.0 | 944 | 0.3261 | 0.8749 | 0.7855 | 0.8184 | 0.9303 | | 0.0511 | 5.0 | 1180 | 0.3209 | 0.8952 | 0.8048 | 0.8379 | 0.9405 | | 0.0363 | 6.0 | 1416 | 0.3568 | 0.8594 | 0.8056 | 0.8290 | 0.9337 | | 0.0214 | 7.0 | 1652 | 0.3562 | 0.8851 | 0.8068 | 0.8350 | 0.9395 | | 0.0152 | 8.0 | 1888 | 0.4160 | 0.8679 | 0.8065 | 0.8309 | 0.9371 | | 0.0136 | 9.0 | 2124 | 0.4247 | 0.8732 | 0.8103 | 0.8375 | 0.9342 | | 0.0096 | 10.0 | 2360 | 0.4242 | 0.8864 | 0.8041 | 0.8381 | 0.9378 | | 0.0036 | 11.0 | 2596 | 0.4306 | 0.8746 | 0.8122 | 0.8365 | 0.9373 | | 0.0029 | 12.0 | 2832 | 0.4420 | 0.8744 | 0.8220 | 0.8446 | 0.9385 | | 0.0014 | 13.0 | 3068 | 0.4526 | 0.8850 | 0.8090 | 0.8395 | 0.9376 | | 0.002 | 14.0 | 3304 | 0.4565 | 0.8851 | 0.8156 | 0.8447 | 0.9385 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1