--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned1107 results: [] --- # multibertfinetuned1107 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4896 - Precision: 0.6282 - Recall: 0.5688 - F1: 0.5970 - Accuracy: 0.8756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 73 | 0.5149 | 0.5414 | 0.4527 | 0.4931 | 0.8510 | | No log | 2.0 | 146 | 0.6092 | 0.57 | 0.5005 | 0.5330 | 0.8464 | | No log | 3.0 | 219 | 0.4896 | 0.6282 | 0.5688 | 0.5970 | 0.8756 | | No log | 4.0 | 292 | 0.5196 | 0.6420 | 0.6176 | 0.6295 | 0.8764 | | No log | 5.0 | 365 | 0.5270 | 0.6479 | 0.6176 | 0.6324 | 0.8786 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3