--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned2408 results: [] --- # multibertfinetuned2408 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3350 - Precision: 0.7395 - Recall: 0.7408 - F1: 0.7401 - Accuracy: 0.9041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 236 | 0.3641 | 0.6769 | 0.6472 | 0.6617 | 0.8806 | | No log | 2.0 | 472 | 0.3733 | 0.7173 | 0.6741 | 0.6950 | 0.8906 | | 0.429 | 3.0 | 708 | 0.3350 | 0.7395 | 0.7408 | 0.7401 | 0.9041 | | 0.429 | 4.0 | 944 | 0.4290 | 0.7572 | 0.7279 | 0.7422 | 0.9030 | | 0.1313 | 5.0 | 1180 | 0.4485 | 0.7432 | 0.7332 | 0.7381 | 0.9007 | | 0.1313 | 6.0 | 1416 | 0.4799 | 0.7785 | 0.7425 | 0.7601 | 0.9100 | | 0.0504 | 7.0 | 1652 | 0.5249 | 0.7875 | 0.7461 | 0.7662 | 0.9103 | | 0.0504 | 8.0 | 1888 | 0.5146 | 0.7863 | 0.7513 | 0.7684 | 0.9120 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3