--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned2408 results: [] --- # multibertfinetuned2408 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4196 - Precision: 0.7180 - Recall: 0.7032 - F1: 0.7105 - Accuracy: 0.8966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 236 | 0.4870 | 0.6425 | 0.5817 | 0.6106 | 0.8591 | | No log | 2.0 | 472 | 0.4357 | 0.6814 | 0.7070 | 0.6939 | 0.8851 | | 0.457 | 3.0 | 708 | 0.4196 | 0.7180 | 0.7032 | 0.7105 | 0.8966 | | 0.457 | 4.0 | 944 | 0.4559 | 0.7308 | 0.7614 | 0.7458 | 0.9024 | | 0.1683 | 5.0 | 1180 | 0.4948 | 0.7497 | 0.7577 | 0.7537 | 0.9043 | | 0.1683 | 6.0 | 1416 | 0.5416 | 0.7376 | 0.7426 | 0.7401 | 0.9018 | | 0.0715 | 7.0 | 1652 | 0.5537 | 0.7548 | 0.7614 | 0.7581 | 0.9077 | | 0.0715 | 8.0 | 1888 | 0.5792 | 0.7580 | 0.7608 | 0.7594 | 0.9079 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3