--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: robbert_seed34_1311 results: [] --- # robbert_seed34_1311 This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3777 - Precisions: 0.8501 - Recall: 0.8262 - F-measure: 0.8370 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 34 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.4251 | 1.0 | 236 | 0.2557 | 0.7903 | 0.7339 | 0.7510 | 0.9248 | | 0.2162 | 2.0 | 472 | 0.3018 | 0.8386 | 0.7336 | 0.7532 | 0.9200 | | 0.1275 | 3.0 | 708 | 0.2461 | 0.8347 | 0.7758 | 0.7858 | 0.9364 | | 0.0797 | 4.0 | 944 | 0.2773 | 0.8694 | 0.7843 | 0.8114 | 0.9383 | | 0.049 | 5.0 | 1180 | 0.2767 | 0.8314 | 0.8143 | 0.8200 | 0.9419 | | 0.03 | 6.0 | 1416 | 0.3036 | 0.8126 | 0.8106 | 0.8104 | 0.9407 | | 0.0189 | 7.0 | 1652 | 0.3637 | 0.8051 | 0.8146 | 0.8073 | 0.9395 | | 0.014 | 8.0 | 1888 | 0.3762 | 0.8479 | 0.7926 | 0.8135 | 0.9436 | | 0.012 | 9.0 | 2124 | 0.3649 | 0.8486 | 0.8019 | 0.8205 | 0.9443 | | 0.0045 | 10.0 | 2360 | 0.3966 | 0.8530 | 0.8000 | 0.8200 | 0.9431 | | 0.0057 | 11.0 | 2596 | 0.3856 | 0.8564 | 0.8129 | 0.8307 | 0.9441 | | 0.0054 | 12.0 | 2832 | 0.3777 | 0.8501 | 0.8262 | 0.8370 | 0.9450 | | 0.0025 | 13.0 | 3068 | 0.3792 | 0.8608 | 0.8207 | 0.8369 | 0.9458 | | 0.0019 | 14.0 | 3304 | 0.3859 | 0.8581 | 0.8149 | 0.8318 | 0.9455 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1