End of training
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: pdelobelle/robbert-v2-dutch-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: robdataaugmentation1511
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# robdataaugmentation1511
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4187
|
22 |
+
- Precisions: 0.8503
|
23 |
+
- Recall: 0.8197
|
24 |
+
- F-measure: 0.8320
|
25 |
+
- Accuracy: 0.9446
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 7.5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 34
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 14
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.4276 | 1.0 | 284 | 0.2688 | 0.8001 | 0.7195 | 0.7402 | 0.9200 |
|
57 |
+
| 0.1871 | 2.0 | 568 | 0.2595 | 0.8183 | 0.7803 | 0.7948 | 0.9308 |
|
58 |
+
| 0.0942 | 3.0 | 852 | 0.2800 | 0.8083 | 0.8047 | 0.8042 | 0.9366 |
|
59 |
+
| 0.0542 | 4.0 | 1136 | 0.2841 | 0.8228 | 0.8232 | 0.8212 | 0.9402 |
|
60 |
+
| 0.0365 | 5.0 | 1420 | 0.3355 | 0.8472 | 0.8056 | 0.8224 | 0.9393 |
|
61 |
+
| 0.0228 | 6.0 | 1704 | 0.3860 | 0.8501 | 0.8009 | 0.8211 | 0.9405 |
|
62 |
+
| 0.0141 | 7.0 | 1988 | 0.3997 | 0.8320 | 0.8175 | 0.8233 | 0.9409 |
|
63 |
+
| 0.0132 | 8.0 | 2272 | 0.4225 | 0.8478 | 0.8025 | 0.8164 | 0.9397 |
|
64 |
+
| 0.0077 | 9.0 | 2556 | 0.3890 | 0.8258 | 0.8410 | 0.8312 | 0.9429 |
|
65 |
+
| 0.006 | 10.0 | 2840 | 0.3954 | 0.8354 | 0.8150 | 0.8235 | 0.9402 |
|
66 |
+
| 0.0045 | 11.0 | 3124 | 0.4266 | 0.8441 | 0.8136 | 0.8246 | 0.9424 |
|
67 |
+
| 0.0037 | 12.0 | 3408 | 0.4171 | 0.8364 | 0.8174 | 0.8245 | 0.9426 |
|
68 |
+
| 0.0021 | 13.0 | 3692 | 0.4221 | 0.8461 | 0.8192 | 0.8294 | 0.9434 |
|
69 |
+
| 0.0018 | 14.0 | 3976 | 0.4187 | 0.8503 | 0.8197 | 0.8320 | 0.9446 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.35.1
|
75 |
+
- Pytorch 2.1.0+cu118
|
76 |
+
- Datasets 2.14.7
|
77 |
+
- Tokenizers 0.14.1
|
runs/Nov15_14-18-10_1ef25cfaef96/events.out.tfevents.1700058850.1ef25cfaef96.279.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:667838104430edfcf37019196179d9e96062750d2db99f50290ec82f7b923d36
|
3 |
+
size 568
|