from transformers import PreTrainedModel from .configuration import * import torch.nn as nn import torch from transformers import AutoModel class OffensivenessEstimationModel(PreTrainedModel): config_class = OffensivenessEstimationConfig def __init__(self, config): super().__init__(config) self.text_encoder = PretrainedLanguageModel(config) self.decoder = nn.Sequential( nn.Dropout(p=config.dropout_rate), nn.Linear(768, config.output_class_num) ) def forward(self, ids, mask): h = self.text_encoder(ids, mask) output = self.decoder(h) return output class PretrainedLanguageModel(PreTrainedModel): config_class = OffensivenessEstimationConfig def __init__(self, config): super().__init__(config) self.language_model = AutoModel.from_pretrained(config.language_model) self.reinit_n_layers = config.reinit_n_layers if self.reinit_n_layers > 0: self._do_reinit() def _do_reinit(self): # Re-init last n layers. for layer in self.language_model.encoder.layer[-1*self.reinit_n_layers:]: for module in layer.modules(): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.language_model.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.language_model.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, ids, mask): output = self.language_model(ids, attention_mask=mask) return output[0][:,0,:]