--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: microsoft/deberta-large model-index: - name: deberta-large-finetuned-sst2 results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - type: accuracy value: 0.9495412844036697 name: Accuracy --- # deberta-large-finetuned-sst2 This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2159 - Accuracy: 0.9495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1214 | 1.0 | 4210 | 0.1969 | 0.9438 | | 0.067 | 2.0 | 8420 | 0.2159 | 0.9495 | | 0.0405 | 3.0 | 12630 | 0.2159 | 0.9495 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2