File size: 18,300 Bytes
1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 820ce9a 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 820ce9a f9127c8 820ce9a f9127c8 820ce9a f9127c8 820ce9a 1162222 06c7ac0 1162222 06c7ac0 1162222 d0a0f49 06c7ac0 d0a0f49 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 1162222 06c7ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
---
library_name: peft
base_model: stabilityai/stablelm-3b-4e1t
license: mit
language:
- en
metrics:
- bleu
- bertscore
- accuracy
tags:
- medical
---
# Model Card for Model ID
Welcome to StableMed , it's a stable 3b llm - alpha fine tuned model for Medical Question and Answering.
## Model Details
### Model Description
This is a stable 3b finetune for medical QnA using MedQuad.
It's intended for education in public health and sanitation,
specifically to improve our understanding of outreach and communication.
- **Developed by:** [Tonic](https://huggingface.co/Tonic)
- **Shared by [optional]:** [Tonic](https://huggingface.co/Tonic)
- **Model type:** stable LM 3b - Alpha
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model [optional]:** [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
### Model Sources [optional]
- **Repository:** [Tonic/stablemed](https://huggingface.co/Tonic/stablemed)
- **Demo :** [Tonic/StableMed_Chat](https://huggingface.co/Tonic/StableMed_Chat)
## Uses
Use this model for educational purposes only , do not use for decision support in the wild.
Use this model for Medical Q n A.
Use this model as a educational tool for "miniature" models.
### Direct Use
Medical Question and Answering
### Downstream Use [optional]
Finetune this model to work in a network or swarm of medical finetunes.
### Out-of-Scope Use
do not use this model in the wild.
do not use this model directly.
do not use this model for real world decision support.
## Bias, Risks, and Limitations
[We use Giskard for evaluation - Coming Soon!]
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
DO NOT USE THIS MODEL WITHOUT EVALUATION
DO NOT USE THIS MODEL WITHOUT BENCHMARKING
DO NOT USE THIS MODEL WITHOUT FURTHER FINETUNING
## How to Get Started with the Model
Use the code below to get started with the model.
```Python
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import gradio as gr
import random
from textwrap import wrap
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import os
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"[INSTRUCTION]{system_prompt}[QUESTION]{user_input}"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
base_model_id = "stabilityai/stablelm-3b-4e1t"
model_directory = "Tonic/stablemed"
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = MistralForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
class ChatBot:
def __init__(self):
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"[INSTRUCTION:]{system_prompt}[QUESTION:] {user_input}"
# Encode user input
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
# Concatenate the user input with chat history
if len(self.history) > 0:
chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
else:
chat_history_ids = user_input_ids
# Generate a response using the PEFT model
response = peft_model.generate(input_ids=chat_history_ids, max_length=400, pad_token_id=tokenizer.eos_token_id)
# Update chat history
self.history = chat_history_ids
# Decode and return the response
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
bot = ChatBot()
title = "👋🏻Welcome to Tonic's StableMed Chat🚀"
description = """
You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed) or You can also use 😷StableMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/StableMed_Chat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
# Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="ParityError/Anime"
)
iface.launch()
```
## Training Details
### Training Data
[Dataset](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset)
```json
output
Dataset({
features: ['qtype', 'Question', 'Answer'],
num_rows: 16407
})
```
### Training Procedure
```json
trainable params: 12940288 || all params: 1539606528 || trainable%: 0.8404931886596937
```
Using Lora
#### Preprocessing [optional]
Original Model Configuration:
```json
StableLMEpochForCausalLM(
(model): StableLMEpochModel(
(embed_tokens): Embedding(50304, 2560)
(layers): ModuleList(
(0-31): 32 x DecoderLayer(
(self_attn): Attention(
(q_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(k_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(v_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(o_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(rotary_emb): RotaryEmbedding()
)
(mlp): MLP(
(gate_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
(up_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
(down_proj): Linear4bit(in_features=6912, out_features=2560, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
)
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=2560, out_features=50304, bias=False)
)
```
Data Formatting :
```json
Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'pathology', 'therapeutic', 'dosage', 'side_effects', 'contraindications', 'manufacturer', 'price', 'availability', 'administration', 'warnings', 'interactions', 'storage', 'expiration_date', 'formulation', 'strength', 'route_of_administration', 'class', 'prescription_required', 'generic_name', 'brand_name', 'patient_instructions']
```
#### Training Hyperparameters
- **Training regime:** <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
```json
TrainOutput(global_step=2051, training_loss=0.6156479549198718, metrics={'train_runtime': 22971.4974, 'train_samples_per_second': 0.357, 'train_steps_per_second': 0.089, 'total_flos': 6.5950444363776e+16, 'train_loss': 0.6156479549198718, 'epoch': 0.5})
```
## Results
| Value | Measurement |
|-------|-------------|
| 50 | 1.427000 |
| 100 | 0.763200 |
| 150 | 0.708200 |
| 200 | 0.662300 |
| 250 | 0.650900 |
| 300 | 0.617400 |
| 350 | 0.602900 |
| 400 | 0.608900 |
| 450 | 0.596100 |
| 500 | 0.602000 |
| 550 | 0.594700 |
| 600 | 0.584700 |
| 650 | 0.611000 |
| 700 | 0.558700 |
| 750 | 0.616300 |
| 800 | 0.568700 |
| 850 | 0.597300 |
| 900 | 0.607400 |
| 950 | 0.563200 |
| 1000 | 0.602900 |
| 1050 | 0.594900 |
| 1100 | 0.583000 |
| 1150 | 0.604500 |
| 1200 | 0.547400 |
| 1250 | 0.586600 |
| 1300 | 0.554300 |
| 1350 | 0.581000 |
| 1400 | 0.578900 |
| 1450 | 0.563200 |
| 1500 | 0.556800 |
| 1550 | 0.570300 |
| 1600 | 0.599800 |
| 1650 | 0.556000 |
| 1700 | 0.592500 |
| 1750 | 0.597200 |
| 1800 | 0.559100 |
| 1850 | 0.586100 |
| 1900 | 0.581100 |
| 1950 | 0.589400 |
| 2000 | 0.581100 |
| 2050 | 0.533100 |
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
with LORA :
```json
PeftModelForCausalLM(
(base_model): LoraModel(
(model): StableLMEpochForCausalLM(
(model): StableLMEpochModel(
(embed_tokens): Embedding(50304, 2560)
(layers): ModuleList(
(0-31): 32 x DecoderLayer(
(self_attn): Attention(
(q_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(k_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(v_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(o_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(rotary_emb): RotaryEmbedding()
)
(mlp): MLP(
(gate_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=6912, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
)
(up_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=6912, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
)
(down_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=6912, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=6912, out_features=2560, bias=False)
)
(act_fn): SiLU()
)
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
)
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(
in_features=2560, out_features=50304, bias=False
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=50304, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
)
)
)
```
### Compute Infrastructure
GCS
#### Hardware
T4
#### Software
transformers
peft
torch
datasets
## Model Card Authors [optional]
[Tonic](https://huggingface.co/Tonic)
## Model Card Contact
[Tonic](https://huggingface.co/Tonic)
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.2.dev0 |