End of training
Browse files- README.md +75 -0
- merges.txt +0 -0
- preprocessor_config.json +26 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +85 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: SCUT-DLVCLab/lilt-roberta-en-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: lilt-invoices2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# lilt-invoices2
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0032
|
19 |
+
- Amount: {'precision': 0.9982517482517482, 'recall': 1.0, 'f1': 0.9991251093613298, 'number': 571}
|
20 |
+
- Billingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161}
|
21 |
+
- Description: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612}
|
22 |
+
- Invoicedate: {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172}
|
23 |
+
- Invoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 207}
|
24 |
+
- Quantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 545}
|
25 |
+
- Subtotal: {'precision': 1.0, 'recall': 0.9933774834437086, 'f1': 0.9966777408637874, 'number': 151}
|
26 |
+
- Totaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139}
|
27 |
+
- Unitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 492}
|
28 |
+
- Vendorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208}
|
29 |
+
- Overall Precision: 0.9994
|
30 |
+
- Overall Recall: 0.9994
|
31 |
+
- Overall F1: 0.9994
|
32 |
+
- Overall Accuracy: 0.9994
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 5e-05
|
52 |
+
- train_batch_size: 8
|
53 |
+
- eval_batch_size: 8
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- training_steps: 500
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Amount | Billingaddress | Description | Invoicedate | Invoicetotal | Quantity | Subtotal | Totaltax | Unitprice | Vendorname | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
63 |
+
| 0.6178 | 4.35 | 100 | 0.1659 | {'precision': 0.8553654743390358, 'recall': 0.9632224168126094, 'f1': 0.9060955518945634, 'number': 571} | {'precision': 0.9815950920245399, 'recall': 0.9937888198757764, 'f1': 0.9876543209876544, 'number': 161} | {'precision': 0.9775641025641025, 'recall': 0.9967320261437909, 'f1': 0.9870550161812297, 'number': 612} | {'precision': 0.9940476190476191, 'recall': 0.9709302325581395, 'f1': 0.9823529411764705, 'number': 172} | {'precision': 0.8571428571428571, 'recall': 0.8985507246376812, 'f1': 0.8773584905660375, 'number': 207} | {'precision': 0.9890909090909091, 'recall': 0.998165137614679, 'f1': 0.993607305936073, 'number': 545} | {'precision': 0.7664233576642335, 'recall': 0.695364238410596, 'f1': 0.7291666666666665, 'number': 151} | {'precision': 0.8818897637795275, 'recall': 0.8057553956834532, 'f1': 0.8421052631578947, 'number': 139} | {'precision': 0.9809523809523809, 'recall': 0.8373983739837398, 'f1': 0.9035087719298245, 'number': 492} | {'precision': 0.9856459330143541, 'recall': 0.9903846153846154, 'f1': 0.988009592326139, 'number': 208} | 0.9368 | 0.9368 | 0.9368 | 0.9368 |
|
64 |
+
| 0.1653 | 8.7 | 200 | 0.0668 | {'precision': 0.9420529801324503, 'recall': 0.9964973730297724, 'f1': 0.9685106382978723, 'number': 571} | {'precision': 0.9876543209876543, 'recall': 0.9937888198757764, 'f1': 0.9907120743034055, 'number': 161} | {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 612} | {'precision': 0.9941520467836257, 'recall': 0.9883720930232558, 'f1': 0.9912536443148688, 'number': 172} | {'precision': 0.9140271493212669, 'recall': 0.9758454106280193, 'f1': 0.9439252336448598, 'number': 207} | {'precision': 0.9945255474452555, 'recall': 1.0, 'f1': 0.9972552607502287, 'number': 545} | {'precision': 0.9328358208955224, 'recall': 0.8278145695364238, 'f1': 0.8771929824561403, 'number': 151} | {'precision': 0.9615384615384616, 'recall': 0.8992805755395683, 'f1': 0.929368029739777, 'number': 139} | {'precision': 0.9978947368421053, 'recall': 0.9634146341463414, 'f1': 0.9803516028955533, 'number': 492} | {'precision': 1.0, 'recall': 0.9951923076923077, 'f1': 0.9975903614457832, 'number': 208} | 0.9770 | 0.9770 | 0.9770 | 0.9770 |
|
65 |
+
| 0.0676 | 13.04 | 300 | 0.0208 | {'precision': 0.9861111111111112, 'recall': 0.9947460595446584, 'f1': 0.990409764603313, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9941860465116279, 'recall': 0.9941860465116279, 'f1': 0.9941860465116279, 'number': 172} | {'precision': 0.9951219512195122, 'recall': 0.9855072463768116, 'f1': 0.9902912621359223, 'number': 207} | {'precision': 0.9963369963369964, 'recall': 0.998165137614679, 'f1': 0.9972502291475711, 'number': 545} | {'precision': 1.0, 'recall': 0.9602649006622517, 'f1': 0.9797297297297297, 'number': 151} | {'precision': 0.9787234042553191, 'recall': 0.9928057553956835, 'f1': 0.9857142857142858, 'number': 139} | {'precision': 0.9918864097363083, 'recall': 0.9939024390243902, 'f1': 0.9928934010152284, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9942 | 0.9942 | 0.9942 | 0.9942 |
|
66 |
+
| 0.0296 | 17.39 | 400 | 0.0067 | {'precision': 0.9982456140350877, 'recall': 0.9964973730297724, 'f1': 0.9973707274320772, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172} | {'precision': 0.9951923076923077, 'recall': 1.0, 'f1': 0.9975903614457832, 'number': 207} | {'precision': 0.9981684981684982, 'recall': 1.0, 'f1': 0.999083409715857, 'number': 545} | {'precision': 0.9933333333333333, 'recall': 0.9867549668874173, 'f1': 0.9900332225913622, 'number': 151} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139} | {'precision': 0.9979674796747967, 'recall': 0.9979674796747967, 'f1': 0.9979674796747967, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9982 | 0.9982 | 0.9982 | 0.9982 |
|
67 |
+
| 0.0143 | 21.74 | 500 | 0.0032 | {'precision': 0.9982517482517482, 'recall': 1.0, 'f1': 0.9991251093613298, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 207} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 545} | {'precision': 1.0, 'recall': 0.9933774834437086, 'f1': 0.9966777408637874, 'number': 151} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9994 | 0.9994 | 0.9994 | 0.9994 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.32.0
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.13.3
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "LayoutLMv3ImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutLMv3Processor",
|
19 |
+
"resample": 2,
|
20 |
+
"rescale_factor": 0.00392156862745098,
|
21 |
+
"size": {
|
22 |
+
"height": 224,
|
23 |
+
"width": 224
|
24 |
+
},
|
25 |
+
"tesseract_config": ""
|
26 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"cls_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"cls_token_box": [
|
21 |
+
0,
|
22 |
+
0,
|
23 |
+
0,
|
24 |
+
0
|
25 |
+
],
|
26 |
+
"eos_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "</s>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"errors": "replace",
|
35 |
+
"mask_token": {
|
36 |
+
"__type": "AddedToken",
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false
|
42 |
+
},
|
43 |
+
"model_max_length": 512,
|
44 |
+
"only_label_first_subword": true,
|
45 |
+
"pad_token": {
|
46 |
+
"__type": "AddedToken",
|
47 |
+
"content": "<pad>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false
|
52 |
+
},
|
53 |
+
"pad_token_box": [
|
54 |
+
0,
|
55 |
+
0,
|
56 |
+
0,
|
57 |
+
0
|
58 |
+
],
|
59 |
+
"pad_token_label": -100,
|
60 |
+
"processor_class": "LayoutLMv3Processor",
|
61 |
+
"sep_token": {
|
62 |
+
"__type": "AddedToken",
|
63 |
+
"content": "</s>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false
|
68 |
+
},
|
69 |
+
"sep_token_box": [
|
70 |
+
0,
|
71 |
+
0,
|
72 |
+
0,
|
73 |
+
0
|
74 |
+
],
|
75 |
+
"tokenizer_class": "LayoutLMv3Tokenizer",
|
76 |
+
"trim_offsets": true,
|
77 |
+
"unk_token": {
|
78 |
+
"__type": "AddedToken",
|
79 |
+
"content": "<unk>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false
|
84 |
+
}
|
85 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|