Toobese commited on
Commit
4cc6648
·
1 Parent(s): 348e05b

End of training

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: SCUT-DLVCLab/lilt-roberta-en-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: lilt-invoices2
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # lilt-invoices2
15
+
16
+ This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0032
19
+ - Amount: {'precision': 0.9982517482517482, 'recall': 1.0, 'f1': 0.9991251093613298, 'number': 571}
20
+ - Billingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161}
21
+ - Description: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612}
22
+ - Invoicedate: {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172}
23
+ - Invoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 207}
24
+ - Quantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 545}
25
+ - Subtotal: {'precision': 1.0, 'recall': 0.9933774834437086, 'f1': 0.9966777408637874, 'number': 151}
26
+ - Totaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139}
27
+ - Unitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 492}
28
+ - Vendorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208}
29
+ - Overall Precision: 0.9994
30
+ - Overall Recall: 0.9994
31
+ - Overall F1: 0.9994
32
+ - Overall Accuracy: 0.9994
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 5e-05
52
+ - train_batch_size: 8
53
+ - eval_batch_size: 8
54
+ - seed: 42
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - training_steps: 500
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Amount | Billingaddress | Description | Invoicedate | Invoicetotal | Quantity | Subtotal | Totaltax | Unitprice | Vendorname | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
63
+ | 0.6178 | 4.35 | 100 | 0.1659 | {'precision': 0.8553654743390358, 'recall': 0.9632224168126094, 'f1': 0.9060955518945634, 'number': 571} | {'precision': 0.9815950920245399, 'recall': 0.9937888198757764, 'f1': 0.9876543209876544, 'number': 161} | {'precision': 0.9775641025641025, 'recall': 0.9967320261437909, 'f1': 0.9870550161812297, 'number': 612} | {'precision': 0.9940476190476191, 'recall': 0.9709302325581395, 'f1': 0.9823529411764705, 'number': 172} | {'precision': 0.8571428571428571, 'recall': 0.8985507246376812, 'f1': 0.8773584905660375, 'number': 207} | {'precision': 0.9890909090909091, 'recall': 0.998165137614679, 'f1': 0.993607305936073, 'number': 545} | {'precision': 0.7664233576642335, 'recall': 0.695364238410596, 'f1': 0.7291666666666665, 'number': 151} | {'precision': 0.8818897637795275, 'recall': 0.8057553956834532, 'f1': 0.8421052631578947, 'number': 139} | {'precision': 0.9809523809523809, 'recall': 0.8373983739837398, 'f1': 0.9035087719298245, 'number': 492} | {'precision': 0.9856459330143541, 'recall': 0.9903846153846154, 'f1': 0.988009592326139, 'number': 208} | 0.9368 | 0.9368 | 0.9368 | 0.9368 |
64
+ | 0.1653 | 8.7 | 200 | 0.0668 | {'precision': 0.9420529801324503, 'recall': 0.9964973730297724, 'f1': 0.9685106382978723, 'number': 571} | {'precision': 0.9876543209876543, 'recall': 0.9937888198757764, 'f1': 0.9907120743034055, 'number': 161} | {'precision': 1.0, 'recall': 0.9901960784313726, 'f1': 0.9950738916256158, 'number': 612} | {'precision': 0.9941520467836257, 'recall': 0.9883720930232558, 'f1': 0.9912536443148688, 'number': 172} | {'precision': 0.9140271493212669, 'recall': 0.9758454106280193, 'f1': 0.9439252336448598, 'number': 207} | {'precision': 0.9945255474452555, 'recall': 1.0, 'f1': 0.9972552607502287, 'number': 545} | {'precision': 0.9328358208955224, 'recall': 0.8278145695364238, 'f1': 0.8771929824561403, 'number': 151} | {'precision': 0.9615384615384616, 'recall': 0.8992805755395683, 'f1': 0.929368029739777, 'number': 139} | {'precision': 0.9978947368421053, 'recall': 0.9634146341463414, 'f1': 0.9803516028955533, 'number': 492} | {'precision': 1.0, 'recall': 0.9951923076923077, 'f1': 0.9975903614457832, 'number': 208} | 0.9770 | 0.9770 | 0.9770 | 0.9770 |
65
+ | 0.0676 | 13.04 | 300 | 0.0208 | {'precision': 0.9861111111111112, 'recall': 0.9947460595446584, 'f1': 0.990409764603313, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9941860465116279, 'recall': 0.9941860465116279, 'f1': 0.9941860465116279, 'number': 172} | {'precision': 0.9951219512195122, 'recall': 0.9855072463768116, 'f1': 0.9902912621359223, 'number': 207} | {'precision': 0.9963369963369964, 'recall': 0.998165137614679, 'f1': 0.9972502291475711, 'number': 545} | {'precision': 1.0, 'recall': 0.9602649006622517, 'f1': 0.9797297297297297, 'number': 151} | {'precision': 0.9787234042553191, 'recall': 0.9928057553956835, 'f1': 0.9857142857142858, 'number': 139} | {'precision': 0.9918864097363083, 'recall': 0.9939024390243902, 'f1': 0.9928934010152284, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9942 | 0.9942 | 0.9942 | 0.9942 |
66
+ | 0.0296 | 17.39 | 400 | 0.0067 | {'precision': 0.9982456140350877, 'recall': 0.9964973730297724, 'f1': 0.9973707274320772, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172} | {'precision': 0.9951923076923077, 'recall': 1.0, 'f1': 0.9975903614457832, 'number': 207} | {'precision': 0.9981684981684982, 'recall': 1.0, 'f1': 0.999083409715857, 'number': 545} | {'precision': 0.9933333333333333, 'recall': 0.9867549668874173, 'f1': 0.9900332225913622, 'number': 151} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139} | {'precision': 0.9979674796747967, 'recall': 0.9979674796747967, 'f1': 0.9979674796747967, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9982 | 0.9982 | 0.9982 | 0.9982 |
67
+ | 0.0143 | 21.74 | 500 | 0.0032 | {'precision': 0.9982517482517482, 'recall': 1.0, 'f1': 0.9991251093613298, 'number': 571} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 612} | {'precision': 0.9942196531791907, 'recall': 1.0, 'f1': 0.9971014492753623, 'number': 172} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 207} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 545} | {'precision': 1.0, 'recall': 0.9933774834437086, 'f1': 0.9966777408637874, 'number': 151} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 139} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 492} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 208} | 0.9994 | 0.9994 | 0.9994 | 0.9994 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.32.0
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.14.4
75
+ - Tokenizers 0.13.3
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "cls_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "cls_token_box": [
21
+ 0,
22
+ 0,
23
+ 0,
24
+ 0
25
+ ],
26
+ "eos_token": {
27
+ "__type": "AddedToken",
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "errors": "replace",
35
+ "mask_token": {
36
+ "__type": "AddedToken",
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false
42
+ },
43
+ "model_max_length": 512,
44
+ "only_label_first_subword": true,
45
+ "pad_token": {
46
+ "__type": "AddedToken",
47
+ "content": "<pad>",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false
52
+ },
53
+ "pad_token_box": [
54
+ 0,
55
+ 0,
56
+ 0,
57
+ 0
58
+ ],
59
+ "pad_token_label": -100,
60
+ "processor_class": "LayoutLMv3Processor",
61
+ "sep_token": {
62
+ "__type": "AddedToken",
63
+ "content": "</s>",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false
68
+ },
69
+ "sep_token_box": [
70
+ 0,
71
+ 0,
72
+ 0,
73
+ 0
74
+ ],
75
+ "tokenizer_class": "LayoutLMv3Tokenizer",
76
+ "trim_offsets": true,
77
+ "unk_token": {
78
+ "__type": "AddedToken",
79
+ "content": "<unk>",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false
84
+ }
85
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff