File size: 4,547 Bytes
2d93628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7fcec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d93628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
base_model: Spestly/Athena-1-0.5B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---

# Triangle104/Athena-1-0.5B-Q5_K_M-GGUF
This model was converted to GGUF format from [`Spestly/Athena-1-0.5B`](https://huggingface.co/Spestly/Athena-1-0.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-1-0.5B) for more details on the model.

---
Model details:
-
Athena-1 0.5B is a fine-tuned, instruction-following large language model derived from Qwen/Qwen2.5-0.5B-Instruct.
 Designed for ultra-lightweight applications, Athena-1 0.5B balances 
compactness with robust performance, making it suitable for tasks with 
limited computational resources.




	
		
	

		Key Features
	




	
		
	

		⚡ Ultra-Lightweight and Efficient
	



Compact Size: With just 500 million parameters, Athena-1 0.5B is ideal for edge devices and low-resource environments.
Instruction Following: Fine-tuned for reliable adherence to user instructions.
Coding and Mathematics: Capable of handling basic coding and mathematical tasks.



	
		
	

		📖 Contextual Understanding
	



Context Length: Supports up to 16,384 tokens, enabling processing of moderately sized conversations or documents.
Token Generation: Can generate up to 4K tokens of coherent output.



	
		
	

		🌍 Multilingual Support
	



Supports 20+ languages, including:
English, Chinese, French, Spanish, German, Italian, Russian
Japanese, Korean, Vietnamese, Thai, and more.





	
		
	

		📊 Structured Data & Outputs
	



Structured Data Interpretation: Handles formats like tables and JSON effectively.
Structured Output Generation: Produces well-formatted outputs for data-specific tasks.




	
		
	

		Model Details
	



Base Model: Qwen/Qwen2.5-0.5B-Instruct
Architecture: Transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias, and tied word embeddings.
Parameters: 500M total.
Layers: (Adjust if different from the base model)
Attention Heads: (Adjust if different from the base model)
Context Length: Up to 16,384 tokens.




	
		
	

		Applications
	



Athena-1 0.5B is optimized for:


Conversational AI: Power lightweight and responsive chatbots.
Code Assistance: Basic code generation, debugging, and explanations.
Mathematical Assistance: Solves fundamental math problems.
Document Processing: Summarizes and analyzes smaller documents effectively.
Multilingual Tasks: Supports global use cases with a compact model.
Structured Data: Reads and generates structured formats like JSON and tables.




	
		
	

		Quickstart
	



Here’s how you can use Athena-1 0.5B for quick text generation:


# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "What can you do?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-0.5B") # Update model name
print(pipe(messages))

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-0.5B") # Update model name
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-0.5B") # Update model name

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-1-0.5B-Q5_K_M-GGUF --hf-file athena-1-0.5b-q5_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Athena-1-0.5B-Q5_K_M-GGUF --hf-file athena-1-0.5b-q5_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-1-0.5B-Q5_K_M-GGUF --hf-file athena-1-0.5b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Athena-1-0.5B-Q5_K_M-GGUF --hf-file athena-1-0.5b-q5_k_m.gguf -c 2048
```