Triangle104
commited on
Commit
•
16b64b0
1
Parent(s):
832f9ce
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- PrimeIntellect/fineweb-edu
|
5 |
+
- PrimeIntellect/fineweb
|
6 |
+
- PrimeIntellect/StackV1-popular
|
7 |
+
- mlfoundations/dclm-baseline-1.0-parquet
|
8 |
+
- open-web-math/open-web-math
|
9 |
+
- arcee-ai/EvolKit-75K
|
10 |
+
- arcee-ai/Llama-405B-Logits
|
11 |
+
- arcee-ai/The-Tomb
|
12 |
+
- mlabonne/open-perfectblend-fixed
|
13 |
+
- microsoft/orca-agentinstruct-1M-v1-cleaned
|
14 |
+
- Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
|
15 |
+
- Team-ACE/ToolACE
|
16 |
+
- Synthia-coder
|
17 |
+
- ServiceNow-AI/M2Lingual
|
18 |
+
- AI-MO/NuminaMath-TIR
|
19 |
+
- allenai/tulu-3-sft-personas-code
|
20 |
+
- allenai/tulu-3-sft-personas-math
|
21 |
+
- allenai/tulu-3-sft-personas-math-grade
|
22 |
+
- allenai/tulu-3-sft-personas-algebra
|
23 |
+
language:
|
24 |
+
- en
|
25 |
+
base_model: PrimeIntellect/INTELLECT-1-Instruct
|
26 |
+
pipeline_tag: text-generation
|
27 |
+
tags:
|
28 |
+
- llama-cpp
|
29 |
+
- gguf-my-repo
|
30 |
+
---
|
31 |
+
|
32 |
+
# Triangle104/INTELLECT-1-Instruct-Q5_K_M-GGUF
|
33 |
+
This model was converted to GGUF format from [`PrimeIntellect/INTELLECT-1-Instruct`](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
34 |
+
Refer to the [original model card](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) for more details on the model.
|
35 |
+
|
36 |
+
## Use with llama.cpp
|
37 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
38 |
+
|
39 |
+
```bash
|
40 |
+
brew install llama.cpp
|
41 |
+
|
42 |
+
```
|
43 |
+
Invoke the llama.cpp server or the CLI.
|
44 |
+
|
45 |
+
### CLI:
|
46 |
+
```bash
|
47 |
+
llama-cli --hf-repo Triangle104/INTELLECT-1-Instruct-Q5_K_M-GGUF --hf-file intellect-1-instruct-q5_k_m.gguf -p "The meaning to life and the universe is"
|
48 |
+
```
|
49 |
+
|
50 |
+
### Server:
|
51 |
+
```bash
|
52 |
+
llama-server --hf-repo Triangle104/INTELLECT-1-Instruct-Q5_K_M-GGUF --hf-file intellect-1-instruct-q5_k_m.gguf -c 2048
|
53 |
+
```
|
54 |
+
|
55 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
56 |
+
|
57 |
+
Step 1: Clone llama.cpp from GitHub.
|
58 |
+
```
|
59 |
+
git clone https://github.com/ggerganov/llama.cpp
|
60 |
+
```
|
61 |
+
|
62 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
63 |
+
```
|
64 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
65 |
+
```
|
66 |
+
|
67 |
+
Step 3: Run inference through the main binary.
|
68 |
+
```
|
69 |
+
./llama-cli --hf-repo Triangle104/INTELLECT-1-Instruct-Q5_K_M-GGUF --hf-file intellect-1-instruct-q5_k_m.gguf -p "The meaning to life and the universe is"
|
70 |
+
```
|
71 |
+
or
|
72 |
+
```
|
73 |
+
./llama-server --hf-repo Triangle104/INTELLECT-1-Instruct-Q5_K_M-GGUF --hf-file intellect-1-instruct-q5_k_m.gguf -c 2048
|
74 |
+
```
|