--- library_name: transformers license: llama3.2 base_model: huihui-ai/Llama-3.2-3B-Instruct-abliterated tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Llama-3.2-3B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of Llama 3.2 3B Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. Evaluations The following data has been re-evaluated and calculated as the average for each test. Benchmark - Llama-3.2-3B-Instruct - Llama-3.2-3B-Instruct-abliterated IF_Eval - 76.55 - 76.76 MMLU Pro - 27.88 - 28.00 TruthfulQA - 50.55 - 50.73 BBH - 41.81 - 41.86 GPQA - 28.39 - 28.41 --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-abliterated-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -c 2048 ```