File size: 5,032 Bytes
eac6a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ab1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac6a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: creativeml-openrail-m
datasets:
- prithivMLmods/Context-Based-Chat-Summary-Plus
language:
- en
base_model: prithivMLmods/Llama-Chat-Summary-3.2-3B
pipeline_tag: text-generation
library_name: transformers
tags:
- safetensors
- chat-summary
- 3B
- Ollama
- text-generation-inference
- trl
- Llama3.2
- llama-cpp
- gguf-my-repo
---

# Triangle104/Llama-Chat-Summary-3.2-3B-Q4_K_M-GGUF
This model was converted to GGUF format from [`prithivMLmods/Llama-Chat-Summary-3.2-3B`](https://huggingface.co/prithivMLmods/Llama-Chat-Summary-3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Llama-Chat-Summary-3.2-3B) for more details on the model.

---
Model details:
-

Llama-Chat-Summary-3.2-3B: Context-Aware Summarization Model

Llama-Chat-Summary-3.2-3B is a fine-tuned model designed for generating context-aware summaries of long conversational or text-based inputs. Built on the meta-llama/Llama-3.2-3B-Instruct foundation, this model is optimized to process structured and unstructured conversational data for summarization tasks.

 Key Features

    Conversation Summarization:
        Generates concise and meaningful summaries of long chats, discussions, or threads.

    Context Preservation:
        Maintains critical points, ensuring important details aren't omitted.

    Text Summarization:
        Works beyond chats; supports summarizing articles, documents, or reports.

    Fine-Tuned Efficiency:
        Trained with Context-Based-Chat-Summary-Plus dataset for accurate summarization of chat and conversational data.

Training Details

    Base Model: meta-llama/Llama-3.2-3B-Instruct
    Fine-Tuning Dataset: prithivMLmods/Context-Based-Chat-Summary-Plus
        Contains 98.4k structured and unstructured conversations, summaries, and contextual inputs for robust training.

Applications

    Customer Support Logs:
        Summarize chat logs or support tickets for insights and reporting.

    Meeting Notes:
        Generate concise summaries of meeting transcripts.

    Document Summarization:
        Create short summaries for lengthy reports or articles.

    Content Generation Pipelines:
        Automate summarization for newsletters, blogs, or email digests.

    Context Extraction for AI Systems:
        Preprocess chat or conversation logs for downstream AI applications.

Load the Model

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Llama-Chat-Summary-3.2-3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

Generate a Summary

prompt = """
Summarize the following conversation:
User1: Hey, I need help with my order. It hasn't arrived yet.
User2: I'm sorry to hear that. Can you provide your order number?
User1: Sure, it's 12345.
User2: Let me check... It seems there was a delay. It should arrive tomorrow.
User1: Okay, thank you!
"""

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.7)

summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Summary:", summary)

Expected Output

"The user reported a delayed order (12345), and support confirmed it will arrive tomorrow."
Deployment Notes

    Serverless API:
    This model currently lacks sufficient usage for serverless endpoints. Use dedicated endpoints for deployment.

    Performance Requirements:
        GPU with sufficient memory (recommended for large models).
        Optimization techniques like quantization can improve efficiency for inference.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Llama-Chat-Summary-3.2-3B-Q4_K_M-GGUF --hf-file llama-chat-summary-3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Llama-Chat-Summary-3.2-3B-Q4_K_M-GGUF --hf-file llama-chat-summary-3.2-3b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Llama-Chat-Summary-3.2-3B-Q4_K_M-GGUF --hf-file llama-chat-summary-3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Llama-Chat-Summary-3.2-3B-Q4_K_M-GGUF --hf-file llama-chat-summary-3.2-3b-q4_k_m.gguf -c 2048
```