--- language: - en license: llama3.1 library_name: transformers tags: - mergekit - merge - shining-valiant - shining-valiant-2 - cobalt - plum - valiant - valiant-labs - llama - llama-3.1 - llama-3.1-instruct - llama-3.1-instruct-8b - llama-3 - llama-3-instruct - llama-3-instruct-8b - 8b - math - math-instruct - science - physics - biology - chemistry - compsci - computer-science - engineering - technical - conversational - chat - instruct - llama-cpp - gguf-my-repo base_model: sequelbox/Llama3.1-8B-PlumMath pipeline_tag: text-generation model_type: llama model-index: - name: sequelbox/Llama3.1-8B-PlumMath results: - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-Shot) type: Winogrande args: num_few_shot: 5 metrics: - type: acc value: 72.38 name: acc - task: type: text-generation name: Text Generation dataset: name: MathQA (5-Shot) type: MathQA args: num_few_shot: 5 metrics: - type: acc value: 40.27 name: acc - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 22.42 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 16.45 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 3.93 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 9.06 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.98 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 21.95 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumMath name: Open LLM Leaderboard --- # Triangle104/Llama3.1-8B-PlumMath-Q4_K_S-GGUF This model was converted to GGUF format from [`sequelbox/Llama3.1-8B-PlumMath`](https://huggingface.co/sequelbox/Llama3.1-8B-PlumMath) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/sequelbox/Llama3.1-8B-PlumMath) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q4_K_S-GGUF --hf-file llama3.1-8b-plummath-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q4_K_S-GGUF --hf-file llama3.1-8b-plummath-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q4_K_S-GGUF --hf-file llama3.1-8b-plummath-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama3.1-8B-PlumMath-Q4_K_S-GGUF --hf-file llama3.1-8b-plummath-q4_k_s.gguf -c 2048 ```