File size: 4,428 Bytes
36db20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae2e60e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36db20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
language:
- en
license: other
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
base_model: Nohobby/MS-Schisandra-22B-v0.3
---

# Triangle104/MS-Schisandra-22B-v0.3-Q4_K_M-GGUF
This model was converted to GGUF format from [`Nohobby/MS-Schisandra-22B-v0.3`](https://huggingface.co/Nohobby/MS-Schisandra-22B-v0.3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Nohobby/MS-Schisandra-22B-v0.3) for more details on the model.

Merge Details
-
Merging steps

Karasik-v0.3

models:
  - model: Mistral-Small-22B-ArliAI-RPMax-v1.1
    parameters:
      weight: [0.2, 0.3, 0.2, 0.3, 0.2]
      density: [0.45, 0.55, 0.45, 0.55, 0.45]
  - model: Mistral-Small-NovusKyver
    parameters:
      weight: [0.01768, -0.01675, 0.01285, -0.01696, 0.01421]
      density: [0.6, 0.4, 0.5, 0.4, 0.6]
  - model: MiS-Firefly-v0.2-22B
    parameters:
      weight: [0.208, 0.139, 0.139, 0.139, 0.208]
      density: [0.7]
  - model: magnum-v4-22b
    parameters:
      weight: [0.33]
      density: [0.45, 0.55, 0.45, 0.55, 0.45]
merge_method: della_linear
base_model: Mistral-Small-22B-ArliAI-RPMax-v1.1
parameters:
  epsilon: 0.05
  lambda: 1.05
  int8_mask: true
  rescale: true
  normalize: false
dtype: bfloat16
tokenizer_source: base

SchisandraVA3

(Config taken from here)

merge_method: della_linear
dtype: bfloat16
parameters:
  normalize: true
  int8_mask: true
tokenizer_source: base
base_model: Cydonia-22B-v1.3
models:
    - model: Karasik03
      parameters:
        density: 0.55
        weight: 1
    - model: Pantheon-RP-Pure-1.6.2-22b-Small
      parameters:
        density: 0.55
        weight: 1
    - model: ChatWaifu_v2.0_22B
      parameters:
        density: 0.55
        weight: 1
    - model: MS-Meadowlark-Alt-22B
      parameters:
        density: 0.55
        weight: 1
    - model: SorcererLM-22B
      parameters:
        density: 0.55
        weight: 1

Schisandra-v0.3

dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
parameters:
  density: 0.5
base_model: SchisandraVA3
models:
  - model: unsloth/Mistral-Small-Instruct-2409
    parameters:
      weight:
        - filter: v_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: o_proj
          value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
        - filter: up_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - filter: gate_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: down_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - value: 0
  - model: SchisandraVA3
    parameters:
      weight:
        - filter: v_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: o_proj
          value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
        - filter: up_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - filter: gate_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: down_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - value: 1

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q4_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q4_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q4_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q4_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q4_k_m.gguf -c 2048
```