--- license: apache-2.0 language: - en - zh base_model: prithivMLmods/Primal-Opus-14B-Optimus-v2 pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - trl - sft - llama-cpp - gguf-my-repo model-index: - name: Primal-Opus-14B-Optimus-v2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 64.04 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 50.18 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 42.07 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 18.9 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 21.15 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.14 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FPrimal-Opus-14B-Optimus-v2 name: Open LLM Leaderboard --- # Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`prithivMLmods/Primal-Opus-14B-Optimus-v2`](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Primal-Opus-14B-Optimus-v2) for more details on the model. --- Multilingual Proficiency: Supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, and more. Quickstart with Transformers - from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Primal-Opus-14B-Optimus-v2" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language models." messages = [ {"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) Intended Use - Advanced Logical Reasoning: Designed for logical deduction, multi-step problem-solving, and knowledge-based tasks. Mathematical & Scientific Problem-Solving: Enhanced capabilities for calculations, theorem proving, and scientific queries. Code Generation & Debugging: Generates and optimizes code across multiple programming languages. Structured Data Analysis: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks. Multilingual Applications: High proficiency in over 29 languages, enabling global-scale applications. Extended Content Generation: Supports detailed document writing, research reports, and instructional guides. Limitations - High Computational Requirements: Due to its 14B parameters and 128K context support, it requires powerful GPUs or TPUs for efficient inference. Language-Specific Variability: Performance may vary across supported languages, especially for low-resource languages. Potential Error Accumulation: Long-text generation can sometimes introduce inconsistencies over extended outputs. Limited Real-World Awareness: Knowledge is restricted to training data and may not reflect recent world events. Prompt Sensitivity: Outputs can depend on the specificity and clarity of the input prompt. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_M-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_M-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_M-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Primal-Opus-14B-Optimus-v2-Q4_K_M-GGUF --hf-file primal-opus-14b-optimus-v2-q4_k_m.gguf -c 2048 ```