Triangle104 commited on
Commit
12de2a9
·
verified ·
1 Parent(s): f87f49c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +0 -78
README.md CHANGED
@@ -18,84 +18,6 @@ tags:
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3`](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3) for more details on the model.
20
 
21
- ---
22
- Model details:
23
- -
24
- This is an uncensored version of Qwen/Qwen2.5-7B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. The test results are not very good, but compared to before, there is much less garbled text.
25
- Usage
26
-
27
- You can use this model in your applications by loading it with Hugging Face's transformers library:
28
-
29
- from transformers import AutoModelForCausalLM, AutoTokenizer
30
-
31
- # Load the model and tokenizer
32
- model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3"
33
- model = AutoModelForCausalLM.from_pretrained(
34
- model_name,
35
- torch_dtype="auto",
36
- device_map="auto"
37
- )
38
- tokenizer = AutoTokenizer.from_pretrained(model_name)
39
-
40
- # Initialize conversation context
41
- initial_messages = [
42
- {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
43
- ]
44
- messages = initial_messages.copy() # Copy the initial conversation context
45
-
46
- # Enter conversation loop
47
- while True:
48
- # Get user input
49
- user_input = input("User: ").strip() # Strip leading and trailing spaces
50
-
51
- # If the user types '/exit', end the conversation
52
- if user_input.lower() == "/exit":
53
- print("Exiting chat.")
54
- break
55
-
56
- # If the user types '/clean', reset the conversation context
57
- if user_input.lower() == "/clean":
58
- messages = initial_messages.copy() # Reset conversation context
59
- print("Chat history cleared. Starting a new conversation.")
60
- continue
61
-
62
- # If input is empty, prompt the user and continue
63
- if not user_input:
64
- print("Input cannot be empty. Please enter something.")
65
- continue
66
-
67
- # Add user input to the conversation
68
- messages.append({"role": "user", "content": user_input})
69
-
70
- # Build the chat template
71
- text = tokenizer.apply_chat_template(
72
- messages,
73
- tokenize=False,
74
- add_generation_prompt=True
75
- )
76
-
77
- # Tokenize input and prepare it for the model
78
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
79
-
80
- # Generate a response from the model
81
- generated_ids = model.generate(
82
- **model_inputs,
83
- max_new_tokens=8192
84
- )
85
-
86
- # Extract model output, removing special tokens
87
- generated_ids = [
88
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
89
- ]
90
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
91
-
92
- # Add the model's response to the conversation
93
- messages.append({"role": "assistant", "content": response})
94
-
95
- # Print the model's response
96
- print(f"Qwen: {response}")
97
-
98
- ---
99
  ## Use with llama.cpp
100
  Install llama.cpp through brew (works on Mac and Linux)
101
 
 
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3`](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3) for more details on the model.
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Use with llama.cpp
22
  Install llama.cpp through brew (works on Mac and Linux)
23