TristanBehrens commited on
Commit
64311e0
1 Parent(s): 87120a0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: jphme/em_german_7b_v01
7
+ model-index:
8
+ - name: out/heilbronnpodcasts
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: jphme/em_german_7b_v01
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+
24
+ load_in_8bit: true
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: TristanBehrens/HeilbronnPodcastsWindowed
30
+ type: completion
31
+ dataset_prepared_path:
32
+ val_set_size: 0.0
33
+ output_dir: ./out/heilbronnpodcasts
34
+
35
+ sequence_len: 4096
36
+ sample_packing: true
37
+ pad_to_sequence_len: true
38
+
39
+ adapter: lora
40
+ lora_model_dir:
41
+ lora_r: 32
42
+ lora_alpha: 16
43
+ lora_dropout: 0.05
44
+ lora_target_linear: true
45
+ lora_fan_in_fan_out:
46
+
47
+ wandb_project:
48
+ wandb_entity:
49
+ wandb_watch:
50
+ wandb_name:
51
+ wandb_log_model:
52
+
53
+ gradient_accumulation_steps: 4
54
+ micro_batch_size: 16
55
+ num_epochs: 4
56
+ optimizer: adamw_bnb_8bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.0002
59
+
60
+ train_on_inputs: false
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ s2_attention:
74
+
75
+ warmup_steps: 10
76
+ evals_per_epoch: 4
77
+ eval_table_size:
78
+ eval_max_new_tokens: 128
79
+ saves_per_epoch: 1
80
+ debug:
81
+ deepspeed:
82
+ weight_decay: 0.0
83
+ fsdp:
84
+ fsdp_config:
85
+ special_tokens:
86
+
87
+ ```
88
+
89
+ </details><br>
90
+
91
+ # out/heilbronnpodcasts
92
+
93
+ This model is a fine-tuned version of [jphme/em_german_7b_v01](https://huggingface.co/jphme/em_german_7b_v01) on the None dataset.
94
+
95
+ ## Model description
96
+
97
+ More information needed
98
+
99
+ ## Intended uses & limitations
100
+
101
+ More information needed
102
+
103
+ ## Training and evaluation data
104
+
105
+ More information needed
106
+
107
+ ## Training procedure
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - learning_rate: 0.0002
113
+ - train_batch_size: 16
114
+ - eval_batch_size: 16
115
+ - seed: 42
116
+ - distributed_type: multi-GPU
117
+ - num_devices: 2
118
+ - gradient_accumulation_steps: 4
119
+ - total_train_batch_size: 128
120
+ - total_eval_batch_size: 32
121
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
122
+ - lr_scheduler_type: cosine
123
+ - lr_scheduler_warmup_steps: 10
124
+ - num_epochs: 4
125
+
126
+ ### Training results
127
+
128
+
129
+
130
+ ### Framework versions
131
+
132
+ - PEFT 0.9.1.dev0
133
+ - Transformers 4.39.0.dev0
134
+ - Pytorch 2.2.0+cu121
135
+ - Datasets 2.17.1
136
+ - Tokenizers 0.15.0