--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-large-detect-dep-v2 results: [] --- # roberta-large-detect-dep-v2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7719 - Accuracy: 0.691 - F1: 0.7625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6278 | 1.0 | 751 | 0.5546 | 0.763 | 0.8227 | | 0.5472 | 2.0 | 1502 | 0.5449 | 0.743 | 0.8160 | | 0.4787 | 3.0 | 2253 | 0.5744 | 0.72 | 0.7929 | | 0.423 | 4.0 | 3004 | 0.7290 | 0.702 | 0.7799 | | 0.3803 | 5.0 | 3755 | 0.7719 | 0.691 | 0.7625 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3