metadata
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: roberta-large-detect-dep-v3
results: []
roberta-large-detect-dep-v3
This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6207
- Accuracy: 0.709
- F1: 0.7820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6273 | 1.0 | 751 | 0.5776 | 0.731 | 0.7860 |
0.5542 | 2.0 | 1502 | 0.5749 | 0.741 | 0.8091 |
0.4873 | 3.0 | 2253 | 0.6207 | 0.709 | 0.7820 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3