Trong-Nghia's picture
End of training
e290f96
|
raw
history blame
1.54 kB
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: roberta-large-detect-dep-v3
    results: []

roberta-large-detect-dep-v3

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6207
  • Accuracy: 0.709
  • F1: 0.7820

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6273 1.0 751 0.5776 0.731 0.7860
0.5542 2.0 1502 0.5749 0.741 0.8091
0.4873 3.0 2253 0.6207 0.709 0.7820

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3