File size: 14,786 Bytes
1296fec acd7c23 1296fec acd7c23 1296fec 65fb50d 1296fec d7a7b9d 1296fec 23febbd 1296fec d7a7b9d 1296fec d7a7b9d 1296fec 6658cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- text-generation-inference
datasets:
- TucanoBR/GigaVerbo
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: "A floresta da Amazônia é conhecida por sua"
example_title: Exemplo
- text: "Uma das coisas que Portugal, Angola, Brasil e Moçambique tem em comum é o"
example_title: Exemplo
- text: "O Carnaval do Rio de Janeiro é"
example_title: Exemplo
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 20
top_p: 0.2
max_new_tokens: 150
co2_eq_emissions:
emissions: 350000
source: CodeCarbon
training_type: pre-training
geographical_location: Germany
hardware_used: NVIDIA A100-SXM4-80GB
model-index:
- name: Tucano-630m
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: CALAME-PT
type: NOVA-vision-language/calame-pt
split: all
args:
num_few_shot: 0
metrics:
- type: acc
value: 56.55
name: accuracy
source:
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
name: Context-Aware LAnguage Modeling Evaluation for Portuguese
- task:
type: text-generation
name: Text Generation
dataset:
name: LAMBADA-PT
type: TucanoBR/lambada-pt
split: train
args:
num_few_shot: 0
metrics:
- type: acc
value: 33.13
name: accuracy
source:
url: https://huggingface.co/datasets/TucanoBR/lambada-pt
name: LAMBADA-PT
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 19.17
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 24.76
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 25.28
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 57.79
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 10
metrics:
- type: pearson
value: 1.99
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 53.73
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 30.01
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 20.73
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: ARC-Challenge (PT)
type: arc_pt
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 28.89
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (PT)
type: hellaswag_pt
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 39.41
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (PT)
type: truthfulqa_pt
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.76
name: bleurt
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
---
# Tucano-630m
<img src="./logo.png" alt="An illustration of a Tucano bird showing vibrant colors like yellow, orange, blue, green, and black." height="200">
## Model Summary
**[Tucano](https://huggingface.co/TucanoBR)** is a series of decoder-transformers natively pretrained in Portuguese. All Tucano models were trained on **[GigaVerbo](https://huggingface.co/datasets/TucanoBR/GigaVerbo)**, a concatenation of deduplicated Portuguese text corpora amounting to 200 billion tokens.
Read our preprint [here](https://arxiv.org/abs/2411.07854).
## Details
- **Architecture:** a Transformer-based model pre-trained via causal language modeling
- **Size:** 630,253,568 parameters
- **Context length:** 2048 tokens
- **Dataset:** [TucanoBR/GigaVerbo](https://huggingface.co/datasets/TucanoBR/GigaVerbo)
- **Language:** Portuguese
- **Number of steps:** 400,000
- **GPU:** 8 NVIDIA A100-SXM4-80GB
- **Training time**: ~ 170 hours
- **Emissions:** 350 KgCO2 (Germany)
- **Total energy consumption:** 920 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Tucano) used to train this model. The main libraries used are:
- [PyTorch](https://github.com/pytorch/pytorch)
- [Transformers](https://github.com/huggingface/transformers)
- [Datasets](https://github.com/huggingface/datasets)
- [Tokenizers](https://github.com/huggingface/tokenizers)
- [Sentencepiece](https://github.com/google/sentencepiece)
- [Accelerate](https://github.com/huggingface/accelerate)
- [FlashAttention](https://github.com/Dao-AILab/flash-attention)
- [Liger Kernel](https://github.com/linkedin/Liger-Kernel)
- [Codecarbon](https://github.com/mlco2/codecarbon)
- [TRL](https://github.com/huggingface/trl)
## Intended Uses
The primary intended use of the Tucano models is to serve as foundations for research and development involving native Portuguese language modeling. Checkpoints saved during training are designed to provide a controlled setting for performing comparative experiments, specifically regarding the effects of active pretraining on the performance of currently available benchmarks. You may also fine-tune and adapt Tucano models for deployment if your use follows the Apache 2.0 license. If you decide to use the Tucano models as a basis for your fine-tuned model, please conduct your own risk and bias assessment.
## Out-of-scope Use
- Tucano models are **not intended for deployment**. They are not an out-of-the-box product and should not be used for human-facing interactions.
- Tucano models are for **the Portuguese language only** and are unsuitable for text generation tasks in other languages.
- Tucano models have **not been fine-tuned** for downstream tasks.
## Basic usage
Using the `pipeline`:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="TucanoBR/Tucano-630m")
completions = generator("A floresta da Amazônia é conhecida por sua", num_return_sequences=2, max_new_tokens=100)
for comp in completions:
print(f"🤖 {comp['generated_text']}")
```
Using the `AutoTokenizer` and `AutoModelForCausalLM`:
```python
from transformers import GenerationConfig, TextGenerationPipeline, AutoTokenizer, AutoModelForCausalLM
import torch
# Specify the model and tokenizer
model_id = "TucanoBR/Tucano-630m"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Specify the generation parameters as you like
generation_config = GenerationConfig(
**{
"do_sample": True,
"max_new_tokens": 2048,
"renormalize_logits": True,
"repetition_penalty": 1.2,
"temperature": 0.3,
"top_k": 30,
"top_p": 0.3,
"use_cache": True,
}
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = TextGenerationPipeline(model=model, task="text-generation", tokenizer=tokenizer, device=device)
# Generate text
prompt = "A floresta da Amazônia é conhecida por sua"
completion = generator(prompt, generation_config=generation_config)
print(completion[0]['generated_text'])
```
## Limitations
Like almost all other language models trained on large text datasets scraped from the web, the Tucano models show behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, and nontoxic text generation. Tucano models are all subject to the following:
- **Hallucinations:** Tucano models can produce content that can be mistaken as true facts, but are misleading or entirely false, i.e., hallucination.
- **Biases and Toxicity:** Tucano models inherit the social and historical stereotypes from the data used to train them. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.
- **Unreliable Code:** Tucano models may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions.
- **Language Limitations:** Tucano models are primarily designed to interact with Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response.
- **Repetition and Verbosity:** Tucano models may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.
Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on them if they intend to use them for real-world applications.
## Evaluations
The table below compares our models against several Portuguese and multilingual language models on the evaluation harness used in our study. More information on it can be found [here](https://github.com/Nkluge-correa/Tucano/tree/main/evaluations/README.md). To learn more about our evaluation harness selection, [read our preprint](https://arxiv.org/abs/2411.07854).
| | Average | Calame-PT | Lambada-PT | ARC-PT | HellaSwag-PT |
|-----------------|---------|-----------|------------|--------|--------------|
| Llama-3.2-3B | 52 | 58.43 | 49.1 | 43.25 | 57.2 |
| Granite-3.0-2b | 51.63 | 56.36 | 47.55 | 42.56 | 60.05 |
| **Tucano-2b4** | 43.58 | 59.06 | 37.67 | 30.43 | 47.17 |
| Llama-3.2-1B | 42.95 | 51.83 | 41.02 | 33.5 | 45.44 |
| **Tucano-1b1** | 41.55 | 58.24 | 34.7 | 30.43 | 42.84 |
| Gemma-2b | 40.38 | 51.16 | 39.88 | 37.95 | 32.53 |
| Bloom-1b7 | 40.37 | 55.64 | 31.98 | 30.34 | 43.52 |
| **Tucano-630m** | 39.5 | 56.55 | 33.13 | 28.89 | 39.41 |
| Gemma-2-2b | 39.21 | 56.7 | 47.1 | 24.19 | 28.85 |
| Bloom-1b1 | 38.18 | 52.94 | 30.22 | 29.83 | 39.74 |
| GlórIA-1b3 | 36.05 | 52.79 | 27.71 | 26.67 | 37.04 |
| **Tucano-160m** | 35.14 | 52.31 | 28.16 | 27.01 | 33.07 |
| Xglm-564m | 34.55 | 50.58 | 27.42 | 25.56 | 34.64 |
| Bloom-560m | 34.32 | 49.95 | 25.44 | 24.74 | 37.15 |
| TTL-460m | 33.78 | 49.42 | 23.29 | 29.4 | 33 |
| mGPT-1b3 | 31.81 | 47.14 | 29.92 | 23.81 | 26.37 |
| TTL-160m | 30.78 | 46.72 | 20.98 | 26.15 | 29.29 |
| Lola-v1 | 30.19 | 26.4 | 18.32 | 30.42 | 45.61 |
| GPorTuguese | 28.92 | 40.61 | 22.98 | 22.48 | 29.62 |
## Cite as 🤗
```latex
@misc{correa2024tucanoadvancingneuraltext,
title={{Tucano: Advancing Neural Text Generation for Portuguese}},
author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza},
year={2024},
eprint={2411.07854},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.07854},
}
```
## Aknowlegments
We gratefully acknowledge the granted access to the [Marvin cluster](https://www.hpc.uni-bonn.de/en/systems/marvin) hosted by [University of Bonn](https://www.uni-bonn.de/en) along with the support provided by its High Performance Computing \& Analytics Lab.
## License
Tucano is licensed under the Apache License, Version 2.0. For more details, see the [LICENSE](LICENSE) file.
|