pdelobelle commited on
Commit
316218e
1 Parent(s): 34b1100

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -0
README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - nl
5
+ library_name: transformers
6
+ ---
7
+ [François Remy](https://fremycompany.com), [Pieter Delobelle](https://pieter.ai), Hayastan Avetisyan, Alfiya Khabibullina, [Miryam de Lhoneux](https://people.cs.kuleuven.be/~miryam.delhoneux/), [Thomas Demeester](https://tdmeeste.github.io)
8
+
9
+ <p align="center">
10
+ <img src="https://huggingface.co/DTAI-KULeuven/tweety-7b-dutch/resolve/main/tweety-7b-dutch.png?download=true" alt="Tweety-7b-dutch: A Dutch Large Language Model" width="20%">
11
+ </p>
12
+
13
+ # Model Card for tweety-7b-dutch
14
+
15
+ tweety-7b-dutch is a foundation model with a focus on the Dutch language, incorporating a [Dutch tokenizer](https://huggingface.co/yhavinga/gpt-neo-1.3B-dutch) for better understanding and generation of Dutch text. It's built on the mistral architecture, employing flash attention for efficient processing within a context window of 8192 tokens. Tweety-7b-dutch is trained on the [cleaned Dutch mC4 dataset](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), without of instruction finetuning.
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ Our tweety-7b-dutch model has an Apache 2.0 license, encouraging applications in research, content creation, and language analysis.
22
+
23
+ - **Developed by:** KU Leuven, UGent, the German Centre for Higher Education, and BeCode
24
+ - **Funded by:** VSC (Flemish Supercomputer Center), [Vlaams AI-onderzoeksprogramma](https://www.flandersairesearch.be/nl)
25
+ - **Model type:** Foundation model using the mistral architecture
26
+ - **Language(s) (NLP):** Dutch
27
+ - **License:** Apache 2.0
28
+
29
+ ## Uses
30
+
31
+ As a base model, tweety-7b-dutch is primed for direct applications across text generation and understanding within the Dutch language, courtesy of its robust training on a clean dataset.
32
+ ## Technical Specifications
33
+
34
+ ### Compute Infrastructure
35
+
36
+ #### Hardware
37
+
38
+ Training utilized Nvidia H100 and A100 GPUs. Inference is accessible on lower-end GPUs, basically any GPU capable of running mistral models.