File size: 4,801 Bytes
fb8cd2a
8212b28
fb8cd2a
8212b28
fb8cd2a
8212b28
 
 
 
fb8cd2a
 
8212b28
fb8cd2a
50b99b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8cd2a
c8cdea2
 
fb8cd2a
 
8212b28
 
 
 
fb8cd2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8212b28
 
fb8cd2a
 
 
8212b28
 
 
 
 
 
fb8cd2a
 
 
8212b28
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# AraT5-msa-base
# AraT5: Text-to-Text Transformers for Arabic Language Generation

<img src="https://huggingface.co/UBC-NLP/AraT5-base/resolve/main/AraT5_CR_new.png" alt="AraT5" width="45%" height="35%" align="right"/>

This is the repository accompanying our paper [AraT5: Text-to-Text Transformers for Arabic Language Understanding and Generation](https://arxiv.org/abs/2109.12068). In this is the repository we introduce:
* Introduce **AraT5<sub>MSA</sub>**, **AraT5<sub>Tweet</sub>**, and **AraT5**: three powerful Arabic-specific text-to-text Transformer based models;
* Introduce **ARGEN**:  A new benchmark for Arabic language generation and evaluation for four Arabic NLP tasks, namely, ```machine  translation```,  ```summarization```,  ```news title   generation```,   ```question   generation```, ,   ```paraphrasing```,   ```transliteration```, and  ```code-switched translation```.
* Evaluate  ```AraT5``` models on ```ARGEN``` and compare against available language models.


---
# How to use AraT5 models
Below is an example for fine-tuning **AraT5-base** for News Title Generation on the Aranews dataset 
``` bash
!python run_trainier_seq2seq_huggingface.py \
        --learning_rate 5e-5 \
        --max_target_length 128 --max_source_length 128 \
        --per_device_train_batch_size 8 --per_device_eval_batch_size 8 \
        --model_name_or_path "UBC-NLP/AraT5-base" \
        --output_dir "/content/AraT5_FT_title_generation" --overwrite_output_dir \
        --num_train_epochs 3 \
        --train_file "/content/ARGEn_title_genration_sample_train.tsv" \
        --validation_file "/content/ARGEn_title_genration_sample_valid.tsv" \
        --task "title_generation" --text_column "document" --summary_column "title" \
        --load_best_model_at_end --metric_for_best_model "eval_bleu" --greater_is_better True --evaluation_strategy epoch --logging_strategy epoch --predict_with_generate\
        --do_train --do_eval
```
For more details about the fine-tuning example, please read this notebook [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/UBC-NLP/araT5/blob/main/examples/Fine_tuning_AraT5.ipynb) 

In addition, we release the fine-tuned checkpoint of the News Title Generation (NGT) which is described in the paper. The model available at Huggingface ([UBC-NLP/AraT5-base-title-generation](https://huggingface.co/UBC-NLP/AraT5-base-title-generation)).

For more details, please visit our own [GitHub](https://github.com/UBC-NLP/araT5).





# AraT5 Models Checkpoints 

AraT5 Pytorch and TensorFlow checkpoints are available on the Huggingface website for direct download and use ```exclusively for research```. ```For commercial use, please contact the authors via email @ (muhammad.mageed[at]ubc[dot]ca).```

| **Model**   | **Link** | 
|---------|:------------------:|
|  **AraT5-base** |     [https://huggingface.co/UBC-NLP/AraT5-base](https://huggingface.co/UBC-NLP/AraT5-base)       | 
| **AraT5-msa-base**  |     [https://huggingface.co/UBC-NLP/AraT5-msa-base](https://huggingface.co/UBC-NLP/AraT5-msa-base)     |     
| **AraT5-tweet-base**  |   [https://huggingface.co/UBC-NLP/AraT5-tweet-base](https://huggingface.co/UBC-NLP/AraT5-tweet-base)    |      
| **AraT5-msa-small** |     [https://huggingface.co/UBC-NLP/AraT5-msa-small](https://huggingface.co/UBC-NLP/AraT5-msa-small)   |     
| **AraT5-tweet-small**|    [https://huggingface.co/UBC-NLP/AraT5-tweet-small](https://huggingface.co/UBC-NLP/AraT5-tweet-small) |  

# BibTex

If you use our models (Arat5-base, Arat5-msa-base, Arat5-tweet-base, Arat5-msa-small, or Arat5-tweet-small ) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated):
```bibtex
@inproceedings{nagoudi-2022-arat5,
    title = "{AraT5: Text-to-Text Transformers for Arabic Language Generation",
    author = "Nagoudi, El Moatez Billah  and
      Elmadany, AbdelRahim  and
      Abdul-Mageed, Muhammad",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    month = May,
    year = "2022",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    }
```

## Acknowledgments
We gratefully acknowledge support from the Natural Sciences and Engineering Research Council  of Canada, the  Social  Sciences and  Humanities  Research  Council  of  Canada, Canadian  Foundation for  Innovation,  [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We  also  thank  the  [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.
 (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.