File size: 7,537 Bytes
c4cf474
34bbd8c
 
b759072
ca33ccb
 
 
34bbd8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4cf474
ca33ccb
c4cf474
5c20dcc
c4cf474
ca33ccb
c4cf474
5c20dcc
 
c4cf474
ca33ccb
 
 
 
c4cf474
 
 
ca33ccb
 
 
 
c4cf474
 
ca33ccb
c4cf474
 
ca33ccb
 
 
 
 
c4cf474
 
 
 
 
 
ca33ccb
 
c4cf474
ca33ccb
 
 
 
 
 
 
 
 
 
 
c4cf474
 
 
ca33ccb
 
 
 
 
 
 
 
 
 
 
 
c4cf474
34bbd8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language:
- en
license: gemma
datasets:
- openbmb/UltraFeedback
pipeline_tag: text-generation
model-index:
- name: Gemma-2-9B-It-SPPO-Iter2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 73.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 63.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 53.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 94.07
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 78.28
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 77.46
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 87.65
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 71.13
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 69.4
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
      name: Open Portuguese LLM Leaderboard
---
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)

# Gemma-2-9B-It-SPPO-Iter2

This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 2, based on the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.

**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)


## Links to Other Models
- [Gemma-2-9B-It-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1)
- [Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2)
- [Gemma-2-9B-It-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3)

### Model Description

- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: google/gemma-2-9b-it


## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)


|                Model                           | LC. Win Rate | Win Rate | Avg. Length |
|-------------------------------------------|:------------:|:--------:|:-----------:|
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1) |48.70 |40.76 | 1669
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) |50.93 | 44.64 | 1759
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) |**53.27** |**47.74** | 1803






### Training hyperparameters
The following hyperparameters were used during training:

- learning_rate: 5e-07
- eta: 1000
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 1
- seed: 42
- distributed_type: deepspeed_zero3
- num_devices: 8
- optimizer: RMSProp 
- lr_scheduler_type: linear 
- lr_scheduler_warmup_ratio: 0.1
- num_train_epochs: 1.0



  
## Citation
```
@misc{wu2024self,
      title={Self-Play Preference Optimization for Language Model Alignment}, 
      author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
      year={2024},
      eprint={2405.00675},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```


# Open Portuguese LLM Leaderboard Evaluation Results  

Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          | Value  |
|--------------------------|--------|
|Average                   |**74.2**|
|ENEM Challenge (No Images)|   73.69|
|BLUEX (No Images)         |      63|
|OAB Exams                 |   53.12|
|Assin2 RTE                |   94.07|
|Assin2 STS                |   78.28|
|FaQuAD NLI                |   77.46|
|HateBR Binary             |   87.65|
|PT Hate Speech Binary     |   71.13|
|tweetSentBR               |   69.40|