File size: 6,728 Bytes
c13a8a9 732df90 f73dafc 732df90 c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc c13a8a9 f73dafc 732df90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
language:
- en
license: apache-2.0
datasets:
- openbmb/UltraFeedback
pipeline_tag: text-generation
model-index:
- name: Llama-3-Instruct-8B-SPPO-Iter3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 68.28
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.33
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.01
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.09
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.38
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
name: Open LLM Leaderboard
---
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
# Llama-3-Instruct-8B-SPPO-Iter3
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
## Links to Other Models
- [Llama-3-Instruct-8B-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1)
- [Llama-3-Instruct-8B-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2)
- [Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3)
### Model Description
- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
| Model | LC. Win Rate | Win Rate | Avg. Length |
|-------------------------------------------|:------------:|:--------:|:-----------:|
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) |31.73 |31.74 | 1962
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) |35.15 |35.98 | 2021
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) |**38.77** |**39.85** | 2066
## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
| | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
|--------|---------------|----------------|------------|-------|-----------|-------|---------|
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) | 63.82 | 54.96 | 76.40 | 75.44 | 79.80 | 65.65 | 69.35
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) | 64.93 | 56.48 | 76.87 | 75.13 | 80.39 | 65.67 | 69.91
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) | 65.19 | 58.04 | 77.11 | 74.91 | 80.86 | 65.60 | **70.29**
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- eta: 1000
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 1
- seed: 42
- distributed_type: deepspeed_zero3
- num_devices: 8
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_train_epochs: 6.0 (stop at epoch=1.0)
## Citation
```
@misc{wu2024self,
title={Self-Play Preference Optimization for Language Model Alignment},
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
year={2024},
eprint={2405.00675},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__Llama-3-Instruct-8B-SPPO-Iter3)
| Metric |Value|
|-------------------|----:|
|Avg. |23.68|
|IFEval (0-Shot) |68.28|
|BBH (3-Shot) |29.74|
|MATH Lvl 5 (4-Shot)| 7.33|
|GPQA (0-shot) | 2.01|
|MuSR (0-shot) | 3.09|
|MMLU-PRO (5-shot) |29.38|
|