angelahzyuan commited on
Commit
1a827d7
1 Parent(s): 3834194

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - openbmb/UltraFeedback
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ ---
9
+ Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
10
+
11
+ # Mistral7B-PairRM-SPPO-Iter1
12
+
13
+ This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 1, based on the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
14
+
15
+ **This is the model reported in the paper** , with K=5 (generate 5 responses per iteration). We attached the Arena-Hard eval results in this model page.
16
+
17
+ ## Links to Other Models
18
+ - [Mistral7B-PairRM-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter1)
19
+ - [Mistral7B-PairRM-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2)
20
+ - [Mistral7B-PairRM-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3)
21
+ - [Mistral7B-PairRM-SPPO](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO)
22
+
23
+ ### Model Description
24
+
25
+ - Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
26
+ - Language(s) (NLP): Primarily English
27
+ - License: Apache-2.0
28
+ - Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
29
+
30
+
31
+ ## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
32
+
33
+
34
+ | Model | LC. Win Rate | Win Rate | Avg. Length |
35
+ |-------------------------------------------|:------------:|:--------:|:-----------:|
36
+ | Mistral7B-PairRM-SPPO Iter 1 | 24.79 | 23.51 | 1855 |
37
+ | Mistral7B-PairRM-SPPO Iter 2 | 26.89 | 27.62 | 2019 |
38
+ | Mistral7B-PairRM-SPPO Iter 3 | 28.53 | 31.02 | 2163 |
39
+ | Mistral7B-PairRM-SPPO Iter 1 (best-of-16) | 31.23 | 32.12 | 2035 |
40
+ | Mistral7B-PairRM-SPPO Iter 2 (best-of-16) | 32.13 | 34.94 | 2174 |
41
+ | Mistral7B-PairRM-SPPO Iter 3 (best-of-16) | 31.07 | 31.86 | 2036 |
42
+
43
+ ## [Arena-Hard Evaluation Results](https://github.com/lm-sys/arena-hard)
44
+
45
+ Model | Score | 95% CI | average \# Tokens |
46
+ |----------|-----------|--------------|-----------|
47
+ Mistral7B-PairRM-SPPO-Iter3| 23.3 | (-1.8, 1.8)|578|
48
+
49
+ ## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
50
+
51
+ Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
52
+
53
+ | | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
54
+ |--------|---------------|----------------|------------|-------|-----------|-------|---------|
55
+ | Mistral7B-PairRM-SPPO Iter 1 | 65.02 | 69.4 | 77.82 | 43.82 | 85.11 | 58.84 | 66.67 |
56
+ | Mistral7B-PairRM-SPPO Iter 2 | 65.53 | 69.55 | 77.03 | 44.35 | 85.29 | 58.72 | 66.75 |
57
+ | Mistral7B-PairRM-SPPO Iter 3 | 65.36 | 69.97 | 76.8 | 42.68 | 85.16 | 58.45 | 66.4 |
58
+ ## [MT-Bench Evaluation Results](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)
59
+
60
+ | | 1st Turn | 2nd Turn | Average |
61
+ |--------|----------|----------|---------|
62
+ | Mistral7B-PairRM-SPPO Iter 1 | 7.63 | 6.79 | 7.21 |
63
+ | Mistral7B-PairRM-SPPO Iter 2 | 7.90 | 7.08 | 7.49 |
64
+ | Mistral7B-PairRM-SPPO Iter 3 | 7.84 | 7.34 | 7.59 |
65
+
66
+ ### Training hyperparameters
67
+ The following hyperparameters were used during training:
68
+
69
+ - learning_rate: 5e-07
70
+ - eta: 1000
71
+ - per_device_train_batch_size: 8
72
+ - gradient_accumulation_steps: 1
73
+ - seed: 42
74
+ - distributed_type: deepspeed_zero3
75
+ - num_devices: 8
76
+ - optimizer: RMSProp
77
+ - lr_scheduler_type: linear
78
+ - lr_scheduler_warmup_ratio: 0.1
79
+ - num_train_epochs: 18.0 (stop at epoch=1.0)
80
+
81
+
82
+
83
+
84
+ ## Citation
85
+ ```
86
+ @misc{wu2024self,
87
+ title={Self-Play Preference Optimization for Language Model Alignment},
88
+ author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
89
+ year={2024},
90
+ eprint={2405.00675},
91
+ archivePrefix={arXiv},
92
+ primaryClass={cs.LG}
93
+ }
94
+ ```