angelahzyuan
commited on
Commit
•
1a827d7
1
Parent(s):
3834194
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- openbmb/UltraFeedback
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
|
10 |
+
|
11 |
+
# Mistral7B-PairRM-SPPO-Iter1
|
12 |
+
|
13 |
+
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 1, based on the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
|
14 |
+
|
15 |
+
**This is the model reported in the paper** , with K=5 (generate 5 responses per iteration). We attached the Arena-Hard eval results in this model page.
|
16 |
+
|
17 |
+
## Links to Other Models
|
18 |
+
- [Mistral7B-PairRM-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter1)
|
19 |
+
- [Mistral7B-PairRM-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2)
|
20 |
+
- [Mistral7B-PairRM-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3)
|
21 |
+
- [Mistral7B-PairRM-SPPO](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO)
|
22 |
+
|
23 |
+
### Model Description
|
24 |
+
|
25 |
+
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
|
26 |
+
- Language(s) (NLP): Primarily English
|
27 |
+
- License: Apache-2.0
|
28 |
+
- Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
|
29 |
+
|
30 |
+
|
31 |
+
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
|
32 |
+
|
33 |
+
|
34 |
+
| Model | LC. Win Rate | Win Rate | Avg. Length |
|
35 |
+
|-------------------------------------------|:------------:|:--------:|:-----------:|
|
36 |
+
| Mistral7B-PairRM-SPPO Iter 1 | 24.79 | 23.51 | 1855 |
|
37 |
+
| Mistral7B-PairRM-SPPO Iter 2 | 26.89 | 27.62 | 2019 |
|
38 |
+
| Mistral7B-PairRM-SPPO Iter 3 | 28.53 | 31.02 | 2163 |
|
39 |
+
| Mistral7B-PairRM-SPPO Iter 1 (best-of-16) | 31.23 | 32.12 | 2035 |
|
40 |
+
| Mistral7B-PairRM-SPPO Iter 2 (best-of-16) | 32.13 | 34.94 | 2174 |
|
41 |
+
| Mistral7B-PairRM-SPPO Iter 3 (best-of-16) | 31.07 | 31.86 | 2036 |
|
42 |
+
|
43 |
+
## [Arena-Hard Evaluation Results](https://github.com/lm-sys/arena-hard)
|
44 |
+
|
45 |
+
Model | Score | 95% CI | average \# Tokens |
|
46 |
+
|----------|-----------|--------------|-----------|
|
47 |
+
Mistral7B-PairRM-SPPO-Iter3| 23.3 | (-1.8, 1.8)|578|
|
48 |
+
|
49 |
+
## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
|
50 |
+
|
51 |
+
Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
|
52 |
+
|
53 |
+
| | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
|
54 |
+
|--------|---------------|----------------|------------|-------|-----------|-------|---------|
|
55 |
+
| Mistral7B-PairRM-SPPO Iter 1 | 65.02 | 69.4 | 77.82 | 43.82 | 85.11 | 58.84 | 66.67 |
|
56 |
+
| Mistral7B-PairRM-SPPO Iter 2 | 65.53 | 69.55 | 77.03 | 44.35 | 85.29 | 58.72 | 66.75 |
|
57 |
+
| Mistral7B-PairRM-SPPO Iter 3 | 65.36 | 69.97 | 76.8 | 42.68 | 85.16 | 58.45 | 66.4 |
|
58 |
+
## [MT-Bench Evaluation Results](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)
|
59 |
+
|
60 |
+
| | 1st Turn | 2nd Turn | Average |
|
61 |
+
|--------|----------|----------|---------|
|
62 |
+
| Mistral7B-PairRM-SPPO Iter 1 | 7.63 | 6.79 | 7.21 |
|
63 |
+
| Mistral7B-PairRM-SPPO Iter 2 | 7.90 | 7.08 | 7.49 |
|
64 |
+
| Mistral7B-PairRM-SPPO Iter 3 | 7.84 | 7.34 | 7.59 |
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
|
69 |
+
- learning_rate: 5e-07
|
70 |
+
- eta: 1000
|
71 |
+
- per_device_train_batch_size: 8
|
72 |
+
- gradient_accumulation_steps: 1
|
73 |
+
- seed: 42
|
74 |
+
- distributed_type: deepspeed_zero3
|
75 |
+
- num_devices: 8
|
76 |
+
- optimizer: RMSProp
|
77 |
+
- lr_scheduler_type: linear
|
78 |
+
- lr_scheduler_warmup_ratio: 0.1
|
79 |
+
- num_train_epochs: 18.0 (stop at epoch=1.0)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
## Citation
|
85 |
+
```
|
86 |
+
@misc{wu2024self,
|
87 |
+
title={Self-Play Preference Optimization for Language Model Alignment},
|
88 |
+
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
|
89 |
+
year={2024},
|
90 |
+
eprint={2405.00675},
|
91 |
+
archivePrefix={arXiv},
|
92 |
+
primaryClass={cs.LG}
|
93 |
+
}
|
94 |
+
```
|