--- license: apache-2.0 datasets: - yuvalkirstain/pickapic_v2 language: - en pipeline_tag: text-to-image --- **Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation** (https://huggingface.co/papers/2402.10210) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657be24e8d360b690d5b665f/uzhoFO22ZdQ5XjBxxDA1a.png) # SPIN-Diffusion-iter2 This model is a self-play fine-tuned diffusion model at iteration 2 from [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) using synthetic data based on the winner images of the [yuvalkirstain/pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset. We have also made a Gradio Demo at [UCLA-AGI/SPIN-Diffusion-demo-v1](https://huggingface.co/spaces/UCLA-AGI/SPIN-Diffusion-demo-v1). ## Model Details ### Model Description - Model type: An diffusion model with unet fine-tuned, based on the strucure of stable diffusion 1.5 - Language(s) (NLP): Primarily English - License: Apache-2.0 - Finetuned from model: runwayml/stable-diffusion-v1-5 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.0e-05 - train_batch_size: 8 - distributed_type: multi-GPU - num_devices: 8 - train_gradient_accumulation_steps: 32 - total_train_batch_size: 2048 - optimizer: AdamW - lr_scheduler: "linear" - lr_warmup_steps: 200 - num_training_steps: 500 ## Citation ``` @misc{yuan2024self, title={Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation}, author={Yuan, Huizhuo and Chen, Zixiang and Ji, Kaixuan and Gu, Quanquan}, year={2024}, eprint={2402.10210}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```